Minimum bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:28 Sa 09.06.2012 | Autor: | Lustique |
Aufgabe | Es seien [mm] $a_1,\dotsc,a_r\in\mathbb{R}^n$ [/mm] gegeben. Bestimmen Sie das Minimum der Funktion
[mm] $f(x)=\sum_{k=1}^r\lVert x-a_k\rVert_2^2$ [/mm]
auf [mm] $\mathbb{R}^n$. [/mm] |
Hallo mal wieder, ich habe zwar schon eine Lösung (oder auch nicht) für diese Aufgabe, bin mir aber bei der Richtigkeit alles andere als sicher. Könntet ihr mal mein Ergebnis kontrollieren?
Also, zuerst ist ja schon mal [mm] $\nabla [/mm] f$ zu berechnen und 0 zu setzen, um die kritischen Punkte zu finden. Also:
Für [mm] $1\leqslant j\leqslant [/mm] n$:
[mm] $\partial_j f(x)=\sum_{k=1}^r \partial_j\left(\lVert x-a_k\rVert_2^2\right)$ [/mm] (ich habe also erst mal, da es sich hier ja um eine Summe handelt, die Ableitung "reingezogen")
[mm] $\partial_j\left(\lVert x-a_k\rVert_2^2\right)=\partial_j\left( \left(x_1-{a_k}_1\right)^2+\dotsb+\left(x_n+{a_k}_n\right)^2\right)=2\left(x_j-{a_k}_j\right)=2x_j-2{a_k}_j$
[/mm]
[mm] $\Longrightarrow \partial_j f(x)=\sum_{k=1}^r 2\left(x_j-{a_k}_j\right)=2\left(r\cdot x_j -\sum_{k=1}^r {a_k}_j\right)$ [/mm]
Also [mm] $\nabla f(x)=2\cdot\begin{pmatrix}r\cdot x_1 -\sum_{k=1}^r {a_k}_1 \\ \vdots \\ r\cdot x_n -\sum_{k=1}^r {a_k}_n$\end{pmatrix}$
[/mm]
Dann habe ich die Hesse-Matrix bestimmt:
Es gilt ja [mm] $\partial_i\partial_j [/mm] f(x)=0$ für [mm] $i\neq [/mm] j$ und [mm] $\partial_j^2 [/mm] f(x)=2r$, oder?
Es folgt also:
[mm] $\Hess [/mm] f(x) = [mm] \begin{pmatrix} 2r & & 0 \\ & \ddots & \\ 0 & & 2r\end{pmatrix}=2r\cdot \mathrm{I}_n$, [/mm] und damit dann auch, dass die Hesse-Matrix positiv definit ist, also immer, irgendwie.
Für den kritischen Punkt:
[mm] $\nabla f(x)=0\in\mathbb{R}^n$: [/mm]
[mm] $r\cdot x_j=\sum_{k=1}^r {a_k}_j \iff x_j=\sum_{k=1}^r \frac{{a_k}_j}{r}$, [/mm] also ist der kritische Punkt, in dem ein lokales, isoliertes Minimum vorliegt:
[mm] $\widehat{x}=\begin{pmatrix}\sum_{k=1}^r \frac{{a_k}_1}{r} \\ \vdots \\ \sum_{k=1}^r \frac{{a_k}_n}{r}\end{pmatrix}=\sum_{k=1}^r \frac{a_k}{r}$ [/mm] (Ist der letzte Schritt so möglich? Kann man das so zusammenfassen?)
Ach ja, da es sich ja bei der Funktion um ein Polynom handelt, ist die Funktion auch diff'bar.
Ist das so richtig? Rückmeldungen sind mehr als erwünscht
|
|
|
|
Hallo Lustique,
> Es seien [mm]a_1,\dotsc,a_r\in\mathbb{R}^n[/mm] gegeben. Bestimmen
> Sie das Minimum der Funktion
>
> [mm]f(x)=\sum_{k=1}^r\lVert x-a_k\rVert_2^2[/mm]
>
> auf [mm]\mathbb{R}^n[/mm].
> Hallo mal wieder, ich habe zwar schon eine Lösung (oder
> auch nicht) für diese Aufgabe, bin mir aber bei der
> Richtigkeit alles andere als sicher. Könntet ihr mal mein
> Ergebnis kontrollieren?
>
> Also, zuerst ist ja schon mal [mm]\nabla f[/mm] zu berechnen und 0
> zu setzen, um die kritischen Punkte zu finden. Also:
>
> Für [mm]1\leqslant j\leqslant n[/mm]:
> [mm]\partial_j f(x)=\sum_{k=1}^r \partial_j\left(\lVert x-a_k\rVert_2^2\right)[/mm]
> (ich habe also erst mal, da es sich hier ja um eine Summe
> handelt, die Ableitung "reingezogen")
>
> [mm]\partial_j\left(\lVert x-a_k\rVert_2^2\right)=\partial_j\left( \left(x_1-{a_k}_1\right)^2+\dotsb+\left(x_n+{a_k}_n\right)^2\right)=2\left(x_j-{a_k}_j\right)=2x_j-2{a_k}_j[/mm]
>
> [mm]\Longrightarrow \partial_j f(x)=\sum_{k=1}^r 2\left(x_j-{a_k}_j\right)=2\left(r\cdot x_j -\sum_{k=1}^r {a_k}_j\right)[/mm]
>
> Also [mm]$\nabla f(x)=2\cdot\begin{pmatrix}r\cdot x_1 -\sum_{k=1}^r {a_k}_1 \\ \vdots \\ r\cdot x_n -\sum_{k=1}^r {a_k}_n$\end{pmatrix}$[/mm]
>
> Dann habe ich die Hesse-Matrix bestimmt:
>
> Es gilt ja [mm]\partial_i\partial_j f(x)=0[/mm] für [mm]i\neq j[/mm] und
> [mm]\partial_j^2 f(x)=2r[/mm], oder?
>
> Es folgt also:
>
> [mm]\Hess f(x) = \begin{pmatrix} 2r & & 0 \\ & \ddots & \\ 0 & & 2r\end{pmatrix}=2r\cdot \mathrm{I}_n[/mm],
> und damit dann auch, dass die Hesse-Matrix positiv definit ist, also immer, irgendwie.
>
> Für den kritischen Punkt:
>
> [mm]\nabla f(x)=0\in\mathbb{R}^n[/mm]:
>
> [mm]r\cdot x_j=\sum_{k=1}^r {a_k}_j \iff x_j=\sum_{k=1}^r \frac{{a_k}_j}{r}[/mm],
> also ist der kritische Punkt, in dem ein lokales, isoliertes Minimum vorliegt:
>
> [mm]\widehat{x}=\begin{pmatrix}\sum_{k=1}^r \frac{{a_k}_1}{r} \\ \vdots \\ \sum_{k=1}^r \frac{{a_k}_n}{r}\end{pmatrix}=\sum_{k=1}^r \frac{a_k}{r}[/mm]
> (Ist der letzte Schritt so möglich? Kann man das so zusammenfassen?)
>
>
> Ach ja, da es sich ja bei der Funktion um ein Polynom
> handelt, ist die Funktion auch diff'bar.
>
> Ist das so richtig? Rückmeldungen sind mehr als erwünscht
Jo, scheint alles zu stimmen!
LG
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:03 So 17.06.2012 | Autor: | Lustique |
Danke nochmals! Ich bin immer noch etwas verblüfft, dass das Alles tatsächlich so (verhältnismäßig) einfach war...
|
|
|
|