Mit und ohne Zurücklegen < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | In einer Urne befinden sich 15 Kugeln, fünf davon sind Treffer, der Rest Nieten. Es werden nun nacheinander a) mit Zurücklegen, b) ohne Zurücklegen drei Kugeln gezogen.
...
Berechnen Sie die Wahrscheinlichkeit für das folgende Ereignis:
E: „Die dritte Kugel ist ein Treffer.“ |
Hallo!
Das Ausrechnen ist eher nicht das Problem, das geht ja schnell mithilfe der Pfadregeln:
E = (TTT, TNT, NTT, NNT)
a) mit Zurücklegen:
P(E) = [mm] (5/15)^3 [/mm] + 2* [mm] (5/15)^2 [/mm] * (10/15) + [mm] (10/15)^2 [/mm] * (5/15) = 9/27 = 1/3
b) ohne Zurücklegen:
5/15 * 4/14 * 3/13 + 2* 5/15 *10/14 * 4/13 + 10/15 * 9/14 * 5/13 = 910/2730 = 1/3
Stimmt das soweit?
Meine Frage ist, ob ich in beiden Fällen auch so argumentieren kann:
P(E) = P(1. Zug ist ein Treffer beim einmaligen Ziehen!) = 5/15 = 1/3
a) Beim Ziehen mit Zurücklegen ist diese Logik klar, da ja egal ist, was zuvor (beim 1. und 2. Zug) passiert ist.
Rechnerisch kann ich mir das so klarmachen, dass ich die (5/15), die in jeder Wahrscheinlichkeit vorkommt, ausklammern kann. Die Sachen in der Klammer ergeben dann 1 (durch Zusammenfassen von Wahrscheinlichkeit und Gegenwahrscheinlichkeit):
P(E) = (5/15) * (...) = 5/15 * 1 = 5/15 = 1/3
b) Warum kann ich das auch beim Ziehen ohne Zurücklegen anwenden? Ich habe das mit anderen Wahrscheinlichkeiten ausprobiert, und es ist kein Zufall! Die Wahrscheinlichkeit für "dritte Kugel ist ein Treffer" hängt ja von den vorherigen Zügen ab, warum ist die Wahrscheinlichkeit trotzdem genauso groß wie für den 1. Zug ein Treffer zu erhalten?
Rechnerisch passt es zwar mit dem Ausklammern (sieht etwas kompliziert aus) und in der Klammer ergibt sich 1:
5/15 * (4*3+10*4+10*4+10*9)/(14*13)
= 5/15 * (4*(10+3)+10*(4+9))/(14*13)
= 5/15 * (4*13 + 10*13)(14*13)
= 5/15 * (14*13)/(14*13)
= 5/15 * 1 = 5/15 = 1/3
Warum funktioniert das immer? Kann man das allgemein zeigen? Und wie kann man das eventuell logisch erklären, ähnlich logisch wie meine Erklärung beim "mit Zurücklegen"?
Danke für eure Hilfe!
|
|
|
|
Hallo Morgenroth,
es ist in dieser Situation ganz einfach:
Die "dritte gezogene Kugel" ist in beiden Fällen, also ob
mit oder ohne Zurücklegen, einfach eine bestimmte aus
m=15 möglichen Kugeln zufällig herausgegriffene, wobei
g=5 Kugeln "Treffer" bedeuten.
Die Wahrscheinlichkeit dafür, dass diese "dritte Kugel"
einen Treffer liefert, ist also einfach
$\ p\ =\ [mm] \frac{g}{m}\ [/mm] =\ [mm] \frac{5}{15}\ [/mm] =\ [mm] \frac{1}{3}$
[/mm]
LG , Al-Chwarizmi
|
|
|
|
|
Warum das immer funktioniert:
Stell dir vor, ein Freund hätte die Ziehung (mit oder ohne Zurücklegen) durchgeführt und einfach auf einen Zettel die 3. gezogene Kugel notiert. Jede Kugel kann dann mit derselben W. notiert worden sein, weil keine der anderen Gegenüber bevorrechtigt/benachteiligt wäre. Also ist die W. 5/15=1/3.
|
|
|
|
|
Das Schöne an der Mathematik ist ja, dass man auf so unterschiedlichen Wegen zum Ergebnis kommt.
Und da du jedes Mal zum selben Ergebnis kommst (mal mehr und mal weniger kompliziert), kann du recht sicher sein, dass dein Ergebnis richtig ist. Das ist also kein "Zufall".
Leider hattest du allerdings den aller-einfachsten Grund für dein Ergebnis nicht erkannt. Nun ja, manchmal sieht man den Wald vor lauter Bäumen nicht.
|
|
|
|