www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Mittelwertänderung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Statistik (Anwendungen)" - Mittelwertänderung
Mittelwertänderung < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertänderung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 Do 16.02.2012
Autor: ronchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

habe mal eine Frage. Wenn ich eine große Stichprobe habe mindestens n>50 und ich berechne mir jetzt den Mittelwert. So nun habe ich meine DAten und gleiche diese nach einer Din Norm an,sprich runde sie ab oder auf, ist jetzt egal. Meine Frage ist warum ändert sich die Größe des Mittelwertes kaum bei großen Stichproben wenn ich die Werte ändere. Gibt es da ein Theorem oder so. Bin dankbar für jede Hilfe.

mfg Ronny

        
Bezug
Mittelwertänderung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Fr 17.02.2012
Autor: wieschoo


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  
> habe mal eine Frage. Wenn ich eine große Stichprobe habe
> mindestens n>50 und ich berechne mir jetzt den Mittelwert.
> So nun habe ich meine DAten und gleiche diese nach einer
> Din Norm an,sprich runde sie ab oder auf, ist jetzt egal.
> Meine Frage ist warum ändert sich die Größe des
> Mittelwertes kaum bei großen Stichproben wenn ich die
> Werte ändere. Gibt es da ein Theorem oder so. Bin dankbar
> für jede Hilfe.
>  
> mfg Ronny

Mittelwert [mm]\frac{1}{50}\sum_{i=1}^{50}x_i[/mm]. Nach der Änderung von [mm]x_j[/mm] um [mm]\delta[/mm] ist der Mittelwert [mm]\frac{1}{50}\left(x_j+\delta +\sum_{i=1,i\neq j}^{50} x_i\right)[/mm]. Berechnet man die Differenz, dann ist [mm]\frac{1}{50}\left(x_j+\delta +\sum_{i=1,i\neq j}^{50} x_i\right)-\frac{1}{50}\sum_{i=1}^{50}x_i=\frac{x_j+\delta}{50}-\frac{x_j}{50}=\frac{\delta}{50}[/mm]
Wenn du alle Werte auf Ganzzahlen rundest, dann hast du den Rundungsfehler [mm] $\delta_i\in [/mm] [-0.5,0.5]$ bei jedem [mm] $x_i$ [/mm] und insgesamt eine Abweichung von [mm] $\frac{1}{50}\sum_{i=1}^{50}\delta_i$. [/mm]
Unter der Annahme, dass die Daten so verteilt sind, dass auf und abrunden etwa gleichhäufig ist [mm] ($\delta_i$ [/mm] eine ZV ist), [mm] ist$\mathbb{E}\delta_i=0$ [/mm] und [mm] $\mathbb{E}\frac{1}{50}\sum_{i=1}^{50}\delta_i=0$ [/mm]

Im Extremfall werden alle Daten aufgerundet (abgerundet) ergibt sich bei dir eine Differenz von [mm] $\frac{1}{50}\sum_{i=1}^{50}0.5=0.5$. [/mm]

Vielleicht hilft dir ja:
- Propagation of Uncertainty mean rounding
- noise mean Round-off error

Bezug
                
Bezug
Mittelwertänderung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Fr 17.02.2012
Autor: ronchen

Ah, jetzt verstehe ich.Vielen Dank, dass hat mir sehr weitergeholfen.

mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]