www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenMittelwertsatz anwenden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Mittelwertsatz anwenden
Mittelwertsatz anwenden < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz anwenden: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:47 Mo 20.12.2010
Autor: stffn

Aufgabe
Zeige, dass [mm] e^x>1+x [/mm] für alle [mm] x\in \IR [/mm] \ {0} gilt. Verwende dazu das Monotoniekriterium oder den Mittelwertsatz.

Hallo und guten Abend!

Also ich würde das jetzt so machen:

[mm] \limes_{x\rightarrow-\infty} 1+x<\limes_{x\rightarrow-\infty} e^x [/mm]

[mm] \gdw -\infty<0 [/mm]

und da [mm] (e^x)'=e^x>(1+x)'=1 [/mm] für alle x>0 gilt, muss das ja stimmen.

Aber irgendwie habe ich das Gefühl, dass das nicht ausreicht.

Naja. Ich würde das Ganze auch gerne mal mit dem Mittelwertsatz machen, weil ich mit diesem noch keinerlei Übung habe.

Der Satz lautet ja [mm] f'(x_{0})=\bruch{f(b)-f(a)}{b-a}. [/mm]
Wie wende ich den auf diese spezielle Aufgabe an?
[mm] f'(x_{0}) [/mm] ist ja die Steigung der Tangente an einem Punkt [mm] x_{0} [/mm] und [mm] \bruch{f(b)-f(a)}{b-a} [/mm] müsste ja eine Sekantensteigung von [mm] e^x [/mm] sein.
x+1 wäre ja die Tangente in x=0, wenn die Stelle definiert wäre.
Ich denke, jetzt müsste man zeigen, dass jede Sekante mit der selben Steigung einen höheren Schnittpunkt mit der y-Achse hat. Oder?

Die Antwort hat Zeit, und wenn man das wunderlicher weise so machen kann wie ich es gezeigt habe, kann ich mir das mit dem Mittelwertsatz auch von Kommilitonen zeigen lassen. Muss nur im Moment mal wieder bisl was nachholen, und da dacht ich mir, kann ich ja die profiss hier schonmal fragen:)
Danke, und schönen Abend noch!

        
Bezug
Mittelwertsatz anwenden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mo 20.12.2010
Autor: leduart

Hallo
Du musst die Monotonie nach verankern:
für x=0 [mm] e^x=1+x, [/mm] und  [mm] (e^x)'>(1+x)' [/mm] beide monoton für alle x>0
fehlen noch die x<0 und zwar die zwischen 0 und -1, danach ist ja 1+x<0 und [mm] e^x>0 [/mm] d. h da ist es klar.
warum betrachtest du den lim gegen -unendlich? es geht doch um alle x?
Gruss leduart


Bezug
                
Bezug
Mittelwertsatz anwenden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Mo 20.12.2010
Autor: stffn


>  warum betrachtest du den lim gegen -unendlich? es geht
> doch um alle x?
>  Gruss leduart
>  

Achso, da dachte ich mir, zeige ich, dass [mm] e^x [/mm] nie negativ wird und damit ab x<-1 sowieso größer als 1+x ist. Aber natürlich habe ich den Bereich [mm] -1\le [/mm] x<0 vergessen.

Ich kann mir das zwar logisch selbst erklären, aber die mathematische Beschreibung fällt mir schwer:
Also da die Steigung der Tangente von [mm] e^x [/mm] für [mm] -1\le [/mm] x<0 immer kleiner als 1 und damit kleiner als die Steigung der Geraden x+1 ist, ist [mm] e^x>1+x [/mm] auch für [mm] -1\le [/mm] x<0.
... und [mm] \limes_{x\rightarrow0}e^x=\limes_{x\rightarrow0}x+1 [/mm] könnte man dann vielleicht noch zusätzlich hinschreiben. Hmmm.


Bezug
                        
Bezug
Mittelwertsatz anwenden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Mo 20.12.2010
Autor: leduart

Hallo
ja, so ists ok, aber warum den lin x gegen 0, du kannst doch einfach x=0 einsetzen, nur die ungleichung gilt nicht für x=0, weil da gleichheit ist, und die brauchst du für den rest der argumente.
gruss leduart


Bezug
                                
Bezug
Mittelwertsatz anwenden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Mo 20.12.2010
Autor: stffn

Ok, das macht Sinn.
Danke nochmal!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]