www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraModul-Untermodul
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Modul-Untermodul
Modul-Untermodul < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modul-Untermodul: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:20 Di 28.06.2005
Autor: Ramco

Hallo leute,

Wie gehts euch?

Ich brauche bei einer Aufgabe eure Hilfe, ich komme irgentwie nicht weiter obwohl die aufgabenstellung hier eigentlich klar ist könnt ihr mir da irgentwie weiter helfen??

Ich wäre euch sehr dankbar, wenn ihr mal rüberschauen könnt!!

Die aufgabe lautet:

Sei für einen Modul M über dem Integrtitätsring R


T( M ) := [mm] \{m \in M: xm=0 für ein x \in R, x \not=0 \} [/mm]

der Torsionsuntermodul von M. Man zeige:

1) T(M) ist ein Untermodul von M.
2) M/T(M) ist torsionsfrei, d.h. T( M/T(M))=0
3) Ist R ein Hauptidealring und M ein endlich erzeugter R-Modul,so ist
M [mm] \cong [/mm] T(M) [mm] \oplus [/mm] M/T(M).

ich werde noch bei der aufgabe weiter kämpfen und warte gleichzeitig auf eure Antwort
danke im Vorraus!
tschüss

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Modul-Untermodul: Teil 1
Status: (Antwort) fertig Status 
Datum: 15:31 Mi 29.06.2005
Autor: Gnometech

Hallo!

Also, Teil 1 (den Einfachen *hüstel*) beweise ich mal - den Rest überlasse ich Dir. :-) Ich gehe mal davon aus, dass $R$ kommutativ ist, da Du ja auch nicht von einem Links- oder Rechtsmodul gesprochen hast. ;-)

Also, dass $0 [mm] \in [/mm] T(M)$ gilt ist klar.

Sei $m [mm] \in [/mm] T(M)$ und $y [mm] \in [/mm] R$ beliebig. Zu zeigen ist: $ym [mm] \in [/mm] T(M)$. Hier argumentiert man wie folgt: da $m [mm] \in [/mm] T(M)$ gibt es ein $x [mm] \in [/mm] R$, $x [mm] \not= [/mm] 0$ mit $xm = 0$. Dann aber folgt $0 = y [mm] \cdot [/mm] 0 = yxm = x(ym)$. Also ist $ym [mm] \in [/mm] T(M)$.

Zu guter Letzt: seien $m, n [mm] \in [/mm] T(M)$. Dann gibt es $x,y [mm] \in [/mm] R$, $x,y [mm] \not= [/mm] 0$ mit $xm = 0$ und $yn = 0$. Da $R$ ein Integritätsbereich ist, gilt auch $xy [mm] \not= [/mm] 0$.

Es folgt: $xy(m + n) = xym + xyn = y(xm) + x(yn) = 0 + 0 = 0$, also gilt $m + n [mm] \in [/mm] T(M)$.

Zum zweiten Aufgabenteil: das ist etwas schwerer. Hier musst Du zeigen, dass für ein $m + T(M) [mm] \in [/mm] T(M / T(M))$ schon gilt: $m + T(M)= T(M)$, also $m [mm] \in [/mm] T(M)$.

Beim letzten Teil würde ich eine kurze exakte Sequenz bemühen, denke ich... welche ist klar. ;-)

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]