www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperModuln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Moduln
Moduln < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Moduln: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:24 Mo 05.05.2014
Autor: Pauli85

Aufgabe
Def. Modul: Sei $R$ ein Ring mit Eins. Ist $M$ eine additive abelsche Gruppe, so nennt man $M$ einen $R-Modul$, wenn es eine Abbildung $R$ [mm] \times$M$ \to$M$, [/mm] $(r,m)$ [mm] \mapsto$rm$ [/mm] gibt, welche die folgenden Axiome erfüllt:
1. [mm] $(m_1+m_2)r [/mm] = m_1r + m_2r$
2. [mm] $m(r_1+r_2) [/mm] = [mm] mr_1 [/mm] + [mm] mr_2$ [/mm]
3. [mm] $m(r_1r_2) [/mm] = [mm] (mr_1)r_2$ [/mm]
4. $m1 = m$



Hallo,

ich habe Probleme mit dem Begriff des Moduls. Die Definition habe ich zwar verstanden, aber bei konkreten Beispielen kann ich einfach nicht rauslesen, wie diese Abbildung aussehen soll.

Bei [mm] \IZ/3\IZ [/mm] als [mm] \IZ-Modul [/mm] wäre ja M = {0,1,2} die abelsche Gruppe zusammen mit der Addition Modulo 3, richtig? Und die Abbildung, die das ganze zu einem Modul macht wäre z.B. die Multiplikation Modulo 3, auch richtig? Jedenfalls konnte ich auf diese Weise die geforderten Axiome nachrechnen.

Aber wie sieht das Ganze zum Beispiel bei [mm] \IQ [/mm] als [mm] \IZ-Modul [/mm] aus? Wie sieht hier die Verknüpfung aus?
Ein anderes Beispiel wäre [mm] \IZ[x] [/mm] als [mm] \IZ-Modul. [/mm] Auch hier kenne ich die Verknüpfung nicht.

Wäre sehr nett, wenn mir das jemand anhand der zwei Beispiele demonstrieren könnte.

Viele Grüße

        
Bezug
Moduln: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Mo 05.05.2014
Autor: angela.h.b.


> Def. Modul: Sei [mm]R[/mm] ein Ring mit Eins. Ist [mm]M[/mm] eine additive
> abelsche Gruppe, so nennt man [mm]M[/mm] einen [mm]R-Modul[/mm], wenn es eine
> Abbildung [mm]R[/mm] [mm]\times[/mm] [mm]M[/mm] [mm]\to[/mm] [mm]M[/mm], [mm](r,m)[/mm] [mm]\mapsto[/mm] [mm]rm[/mm] gibt, welche
> die folgenden Axiome erfüllt:
>  1. [mm](m_1+m_2)r = m_1r + m_2r[/mm]
>  2. [mm]m(r_1+r_2) = mr_1 + mr_2[/mm]
>  
> 3. [mm]m(r_1r_2) = (mr_1)r_2[/mm]
>  4. [mm]m1 = m[/mm]
>  
>
> Hallo,
>  
> ich habe Probleme mit dem Begriff des Moduls. Die
> Definition habe ich zwar verstanden, aber bei konkreten
> Beispielen kann ich einfach nicht rauslesen, wie diese
> Abbildung aussehen soll.
>  
> Bei [mm]\IZ/3\IZ[/mm] als [mm]\IZ-Modul[/mm] wäre ja M = {0,1,2} die
> abelsche Gruppe

Hallo,

laß uns der Deutlichkeit halber schreiben [mm] M:=\{\overline{0},\overline{1}, \overline{2}\}, [/mm] damit wir uns nicht der Illusion hingeben, daß die Elemente von M natürliche Zahlen sind.

> zusammen mit der Addition Modulo 3,

Genau.

[mm] \overline{a}+_3 \overline{b}:=\overline{a+b}. [/mm]

+_3 steht für die Addition in  [mm]\IZ/3\IZ[/mm], + für die in [mm] \IZ, [/mm] was aber nichts mit dem [mm] \IZ-Modul [/mm] zu tun hat.


> richtig? Und die Abbildung, die das ganze zu einem Modul
> macht wäre z.B. die Multiplikation Modulo 3, auch richtig?

Hmmmm - nicht ganz.
Die Multiplikation mod 3 verknüpft ja Restklassen miteinander.
Im [mm] \IZ-Modul[/mm]   [mm]\IZ/3\IZ[/mm] jedoch haben wir eine Multiplikation von Elementen aus [mm] \IZ [/mm] mit Restklassen.

(Denk an die Multiplikation mit Skalaren im [mm] \IR- [/mm] VR [mm] \IR^3. [/mm] Auch bei dieser Multiplikation werden ganz verschiedene Objekte, nämlich Zahlen mit Spalten, verknüft, und ebenso verschieden sind auch die Elemente von [mm] \IZ [/mm] und  [mm]\IZ/3\IZ[/mm] - auch wenn man es ihnen nicht sofort ansieht.)

Die Multiplikation ist so:
[mm] n\odot \overline{a}:= \overline{n*a} (=\overline{n}*_3\overline{a}) [/mm]
Sie ist mithilfe der Multiplikation der Restklassen definiert, aber es ist falsch zu sagen, daß es sich um dieselbe Multiplikation handelt.


> Jedenfalls konnte ich auf diese Weise die geforderten
> Axiome nachrechnen.
>  
> Aber wie sieht das Ganze zum Beispiel bei [mm]\IQ[/mm] als [mm]\IZ-Modul[/mm]
> aus? Wie sieht hier die Verknüpfung aus?

So:

[mm] \bruch{p}{q}\odot z:=\bruch{p}{q}*\bruch{z}{1}, [/mm]

also mithilfe der Multiplikation in [mm] \IQ. [/mm]


>  Ein anderes Beispiel wäre [mm]\IZ[x][/mm] als [mm]\IZ-Modul.[/mm] Auch hier
> kenne ich die Verknüpfung nicht.

[mm] a*\summe_{k=0}^na_kx^k:=\summe_{k=0}^n(a*a_k)x^k [/mm]

Alles Sachen, die man ohne groß drüber nachzudenken in der Schule schon getan hat.

LG Angela


>  
> Wäre sehr nett, wenn mir das jemand anhand der zwei
> Beispiele demonstrieren könnte.
>  
> Viele Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]