www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesMoivresche Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Moivresche Formel
Moivresche Formel < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Moivresche Formel: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:36 Fr 28.12.2007
Autor: able1tung

Hallo ^^;;;

Ich bin auf der Suche nach einer plausiblen, einfachen Herleitung der Moivreschen Formel

[mm] z^{n}=r^{n}*(\cos n*a + i*\sin n*a) [/mm]?

Bei Wiki habe ich einen Beweis durch vollständige Induktion gefunden. (Diesen kann ich jedoch nicht
zu 100% nachvollziehen ---)

Ich Suche daher eine einfache Herleitung (vermutlich aus der Formel für die Polarkoordinaten).
WENN ES MÖGLICH IST, BITTE KEINE HERLEITUNG MIT DER EULER'SCHEN RELATION, d.h. mit nicht re^... etc.

Ich hoffe ihr könnt mir helfen und bin euch deshalb im voraus schon sehr dankbar ^^

Beste Grüße

        
Bezug
Moivresche Formel: mit Euler
Status: (Antwort) fertig Status 
Datum: 16:42 Fr 28.12.2007
Autor: Loddar

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo able1tung!


Hm, Du willst eine einfache Erklärung und schließt die einfachste von vornherein aus? Das ist alles andere als leicht.

Denn über die Beziehung $z \ = \ r*e^{i*\varphi} \ = \ r*\left[\cos(\varphi)+i*\sin(\varphi)\left]$ ist es lediglich ein einziger Schritt mit Hilfe eines MBPotenzgesetzes:
$$\left( \ a^m \ \right)^n \ = \ a^{m*n}$$

Gruß
Loddar


Bezug
                
Bezug
Moivresche Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Fr 28.12.2007
Autor: able1tung

Kannst du diesen einen Schritt kurz darlegen ^^
ich seh's grad irgendwie nicht...^^

Bezug
                        
Bezug
Moivresche Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Fr 28.12.2007
Autor: angela.h.b.


> Kannst du diesen einen Schritt kurz darlegen ^^
>  ich seh's grad irgendwie nicht...^^

Hallo,

wir haben

z  = [mm] r\cdot{}e^{i\cdot{}\varphi} [/mm]

und wollen [mm] z^n [/mm] berechnen.

Es ist

[mm] z^n=(\ r\cdot{}e^{i\cdot{}\varphi})^n [/mm] = [mm] r^n* (e^{i\cdot{}\varphi})^n =r^n*e^{i\cdot{}n\varphi} [/mm]

[mm] =r^n(cos(n\varphi)+i*sin(n\varphi)). [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]