www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperMonoid
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Monoid
Monoid < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monoid: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Mo 06.01.2014
Autor: lapeiluw

Aufgabe
"Die Uhr als Monoid"
Sei [mm] C_{12} := ( \underline{12}, +_{12}, 0) [/mm] mit
[mm] x +_{12} y :=\left\{\begin{matrix} x + y, & \mbox{falls }x + y < 12 \\ x + y - 12, & \mbox{sonst } \end{matrix}\right. [/mm]

(a) Bestimme zu [mm] x \in \underline{12} [/mm] das Inverse in [mm] C_{12} [/mm]
(b) Sind [mm] x, y, z \in \underline{12} [/mm] und [mm] t := x + y + z \in\IN [/mm], so begründe:

[mm] (x +_{12} y) +_{12} z =\left\{\begin{matrix} t & \mbox{falls }t < 12 \\ t - 12 & \mbox{falls }12 \le t \le 24 \\ t - 24 & \mbox{sonst. } \end{matrix}\right. [/mm]

Folgere hieraus das Assoziationsgesetz für [mm] +_{12} [/mm]

Also ich bin bei (b).
Das Prinzip ist klar, also dass es diesmal 3 Fälle gibt, ist logisch, da wie auch notiert, da  [mm] t \mbox{ 1. } < 12, \mbox{ 2. } 12 \le t < 24, \mbox{ 3. } \le 24 [/mm] sein kann, und unsere "Uhr"/unsere Menge des Monoids nur bis 11 geht.
Dementsprechend, würden bei 4 Elementen noch ein 4. Fall dazukommen [mm] < 36 [/mm] usw. Das ist klar. Nur wie begründe ich das mathematisch. Einen Kreis aufzeichnen, wird ja sicher nicht zählen ;)

Ich habe erst überlegt, den Term [mm] (x +_{12} y) [/mm] durch eine neue Variable zu ersetzen bspw. [mm] w [/mm] um nur 2 Variable zu haben und mit der Vorgabe umgehen zu können. Nur stoße ich da schon ganz zu Anfang an Probleme, da ja schon die Variable [mm] w < 12 [/mm] oder [mm] \le 12 [/mm] sein kann. Irgendwie hilft mir das also nicht wirklich weiter...

Also ich brauche einen Tipp für die Herangehensweise an diesen Beweis.
Danke

        
Bezug
Monoid: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Mo 06.01.2014
Autor: leduart

Hallo
du musst die Fälle x+y<12 und [mm] \ge [/mm] 12 getrennt behandeln. ob du dafür ein w einführst ist egal.
Gruss leduart

Bezug
                
Bezug
Monoid: Lösungsversuch
Status: (Frage) beantwortet Status 
Datum: 11:57 Di 07.01.2014
Autor: lapeiluw

Naja, das mit der Fallunterscheidung war mir schon klar, aber wie ich das konkret angehen kann ist mir unklar.
Ich hab mal versucht aufzuschreiben, wie ich es machen würde und danach folgen meine Fragen dazu:

1. Fall [mm] x + y < 12, [/mm] Einführung von [mm] w := x + y [/mm]

Beweis 1. Fall
[mm] (x +_{12} y) +_{12} z = (x + y) +_{12} z = w +_{12} z =\left\{\begin{matrix} w + z & \mbox{falls } w + z < 12 \\ w + z - 12, & \mbox{falls }sonst. \end{matrix}\right. [/mm]

2. Fall [mm] x + y \ge 12, [/mm] Einführung von [mm] v := x + y - 12 [/mm]

Beweis 2. Fall
[mm] (x +_{12} y) +_{12} z = (x + y - 12) +_{12} z = v +_{12} z =\left\{\begin{matrix} v + z & \mbox{falls } v + z < 12 \\ v + z - 12, & \mbox{falls }sonst. \end{matrix}\right. [/mm]

[mm] \longrightarrow [/mm] 1. Fall [mm] w + z = x + y + z = t [/mm],

2. Fall [mm] w + z - 12 = x + y + z - 12 = t - 12 [/mm],

3. Fall [mm] v + 12 = x + y - 12 + z = t - 12 = \mbox{2. Fall} [/mm],

4. Fall [mm] v + z - 12 = x + y - 12 + z - 12 = t - 24 [/mm]

was m.E. unsauber aussieht, ist, wie ich jetzt in den 2. = 3. Fall die Bedingung [mm] 12 \le t \le 12 [/mm] sauber reinbekomme und für den 4. Fall [mm] t \ge 24 [/mm].
Ist der Beweis, so wie ich ihn führe, denn formal korrekt? Kann man das so schreiben?
Danke

Bezug
                        
Bezug
Monoid: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Di 07.01.2014
Autor: leduart

Hallo
1. Fall t<12 folgt x+y<12 folgt (x+y)+z=x+y+z=x+(y+z)
2. fall [mm] 12\le t\le [/mm] 24
a) x+y<12  
x+y+z=(x+y)+z-12=x+y+z-12 => t=t-12
[mm] b)x+y\ge [/mm] 12   x+y=x+y-12  x+y+z=x+y-12+z=x+y+z-12=> t =t-12
entsprechend für t>24
dazu muß x+y>12  oder x+z>12 oder y+z>12
Gruss leduart

Bezug
                                
Bezug
Monoid: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Di 07.01.2014
Autor: lapeiluw

ok, danke...
hm das heißt, meine Form des Beweisführens funktioniert so nicht?
ich würde mich auch über einen Kommentar zu meinem Versuch freuen...

Bezug
                                        
Bezug
Monoid: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Di 07.01.2014
Autor: leduart

Hallo
siehe meine andere Antwort
Gruß leduart

Bezug
                        
Bezug
Monoid: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Di 07.01.2014
Autor: leduart

Hallo
schreib doch bitte drüber  für welche t du gerade arbeitest-
0 ter Fall t<12 klar, da x+y<=x+_{12} y und damit w+z=w+_{12}=> t=t
1. Fall [mm] 12\le [/mm] t ˜ le 24

> 1.1 Fall [mm]x + y < 12,[/mm] Einführung von [mm]w := x + y[/mm]
>  
> Beweis 1.1  Fall

wegen x+y=x+_{12} y

> [mm](x +_{12} y) +_{12} z = (x + y) +_{12} z = w +_{12} z =\left\{\begin{matrix} w + z & \mbox{falls } w + z < 12 \\ w + z - 12, & \mbox{falls }sonst. \end{matrix}\right.[/mm]

dahinter sollte dann das Ergebnis für t

>  
> 2. Fall [mm]x + y \ge 12,[/mm] Einführung von [mm]v := x + y - 12[/mm]
>  
> Beweis 2. Fall
>  [mm](x +_{12} y) +_{12} z = (x + y - 12) +_{12} z = v +_{12} z =\left\{\begin{matrix} v + z & \mbox{falls } v + z < 12 \\ v + z - 12, & \mbox{falls }sonst. \end{matrix}\right.[/mm]
>  

wieder richtig, noch auf w übertragen

> [mm]\longrightarrow[/mm] 1. Fall [mm]w + z = x + y + z = t [/mm],
>  
> 2. Fall [mm]w + z - 12 = x + y + z - 12 = t - 12 [/mm],
>  
> 3. Fall [mm]v + 12 = x + y - 12 + z = t - 12 = \mbox{2. Fall} [/mm],
>  
> 4. Fall [mm]v + z - 12 = x + y - 12 + z - 12 = t - 24[/mm]
>  
> was m.E. unsauber aussieht, ist, wie ich jetzt in den 2. =
> 3. Fall die Bedingung [mm]12 \le t \le 12[/mm] sauber reinbekomme
> und für den 4. Fall [mm]t \ge 24 [/mm].
>  Ist der Beweis, so wie ich
> ihn führe, denn formal korrekt? Kann man das so
> schreiben?

Sas ist alles richtig, aber einfacher zu lesen wenn du die 3 Fälle für t einzeln betrachtest und dabei ja nur für den Fall 12<t<24 eine Fallunterscheidung brauchst und dein v oder w benutzen kannst
wie du es aufschreibst ist zwar nicht falsch, aber sehr undurchsichtig.
Gruss leduart


Bezug
                                
Bezug
Monoid: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Do 09.01.2014
Autor: lapeiluw

Vielen Dank, das hat mir sehr geholfen. Habe nun eine, ich denke, klare und verständliche Lösung!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]