Monomordnung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:26 Do 02.02.2012 | Autor: | selinaCC |
Aufgabe | Gegeben seine folgende Monome:
[mm] x^{2}y^{2}z^{2}, x^{6}, y^{6}, y^{7}, x^{8}, xy^{4}z, x^{2}y^{4}z
[/mm]
Ordne die Monome nach
a) lexikographische Ordnung
b) graduierte lexikographische Ordnung
c) inverse lexikographische Ordnung
d) graduierte inverse lexikographische Ordnung |
Hallo,
ich bin gerade dabei die verschiedenen Monomordnungen zu lernen. Leider versteh ich es nicht so ganz. Es wäre super, wenn mir jemand einen Tipp geben könnte, damit es bei mir Klick macht. Habe auch schon im Internet gesucht, leider findet man da immer nur Beispiele mit Wörtern, also zb. Tierarzt < Tierheim nach der lexikographischen Ordnung.
Habe mal meine Definitionen aufgeschrieben:
a) lexikographische Ordnung
[mm] \alpha [/mm] < [mm] \beta, [/mm] wenn für den kleinsten Index i mit [mm] \alpha_{i} \not= \beta_{i} [/mm] gilt: [mm] \alpha_{i} [/mm] < [mm] \beta_{i} [/mm]
b) graduierte lexikographische Ordnung
[mm] \alpha [/mm] < [mm] \beta, [/mm] falls deg [mm] x^{\alpha} [/mm] < deg [mm] x^{\beta} [/mm] bzw. deg [mm] x^{\alpha} [/mm] = deg [mm] x^{\beta} [/mm] und [mm] \alpha [/mm] lexikographisch kleiner als [mm] \beta
[/mm]
c) inverse lexikographische Ordnung
[mm] \alpha [/mm] < [mm] \beta, [/mm] wenn für den größten Index i mit [mm] \alpha_{i} \not= \beta_{i} [/mm] gilt:
[mm] \alpha_{i} [/mm] < [mm] \beta_{i} [/mm]
d) graduierte inverse lexikographische Ordnung
Erstes Ordnungskriterium ist der Grad des Monoms: Falls deg [mm] x^{\alpha} [/mm] < deg [mm] x^{\beta}, [/mm] ist [mm] \alpha [/mm] < [mm] \beta. [/mm] Nur falls beide Monome gleichen Grad haben, soll [mm] \alpha [/mm] < [mm] \beta [/mm] genau dann gelten, wenn [mm] \alpha [/mm] im Sinne der inversen lexikographischen Ordnung größer ist als [mm] \beta [/mm] . Man invertiert also nicht nur die Reihenfolge der Variablen, sondern auch die Ordnungsrelationen im Fall gleicher Grade.
Mein Problem ist, dass ich das schon mit den Definitionen nicht verstehe... Ich frage mich zum Beispiel, bei Def, a) was bedeutet dass mit dem kleinsten Index i?
Würde mich wirklich sehr über Hilfe eurerseits freuen!
LG
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:29 Sa 04.02.2012 | Autor: | selinaCC |
Aufgabe | Gegeben seine folgende Monome:
[mm] x^{2}y^{2}z^{2}, x^{6}, y^{6}, y^{7}, x^{8}, xy^{4}z, x^{2}y^{4}z
[/mm]
Ordne die Monome nach
a) lexikographische Ordnung
b) graduierte lexikographische Ordnung
c) inverse lexikographische Ordnung
d) graduierte inverse lexikographische Ordnung |
Hi,
also ich habe es jetzt mal alleine probiert, bin mir allerdings keinesfalls sicher, ob das so stimmt...
a) lexikographische Ordnung
[mm] x^{8} [/mm] > [mm] x^{6} [/mm] > [mm] x^{2}y^{4}z [/mm] > [mm] x^{2}y^{2}z^{2} [/mm] > [mm] xy^{4}z [/mm] > [mm] y^{7} [/mm] > [mm] y^{6}
[/mm]
b) graduierte lexikographische Ordnung
[mm] xy^{4}z [/mm] < [mm] x^{6} [/mm] < [mm] y^{6} [/mm] < [mm] x^{2}y^{2}z^{2} [/mm] < [mm] x^{2}y^{4}z [/mm] < [mm] y^{7} [/mm] < [mm] x^{8}
[/mm]
c) inverse lexikographische Ordnung
[mm] y^{6} [/mm] > [mm] y^{7} [/mm] > [mm] xy^{4}z [/mm] > [mm] x^{2}y^{2}z^{2} [/mm] > [mm] x^{2}y^{4}z [/mm] > [mm] x^{6} [/mm] > [mm] x^{8}
[/mm]
d) graduierte inverse lexikographische Ordnung
[mm] x^{8} [/mm] > [mm] y^{7} [/mm] > [mm] x^{2}y^{4}z [/mm] > [mm] y^{6} [/mm] > [mm] x^{6} [/mm] > [mm] xy^{4}z [/mm] > [mm] x^{2}y^{2}z^{2} [/mm]
Vielleicht kann mich jemand verbessern, damit ich das Thema endlich abhaken kann :)
Liebe Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:28 Sa 04.02.2012 | Autor: | Black90 |
Hey,
a) und c) dürften richtig sein.
bei
b) hätte ich jetzt
[mm] y^6 [/mm] < [mm] x{y^4}z [/mm] < [mm] x^2y^2z^2 [/mm] < [mm] x^6 [/mm] < [mm] y^7 [/mm] < [mm] {x^2}{y^4}z
und bei d)
[mm] x^6 [/mm] < [mm] y^6
gesagt.
Ich gehe immer so vor, dass ich mir zu jedem Monom den zugehörigen Vektor für die Exponenten aus dem (hier) [mm] \mathbb{N}^3 [/mm] notiere.
D.h [mm] x^6 [/mm] entspricht (6,0,0) [mm] x{y^4}z [/mm] entspricht (1,4,1) usw. also allgemein für [mm] x^{\alpha}y^{\beta}z^{\gamma} [/mm] schreibt man [mm] (\alpha, \beta, \gamma) [/mm] (das Umschreiben kann man sich natürlich auch sparen, aber ich finde man kann es so schneller ablesen)
Bei der graduierten lexikographischen Ordnung, ordnet man nun zunächst nach der Summe der Exponenten, d.h [mm] x^{\alpha_1}y^{\beta_1}z^{\gamma_1}
Nur wenn die Summe für einige Monome gleich ist, werden die dann nach der lexikographischen Ordnung angeordnet.
P.S Du bist nich auch zufällig beim Seiler?
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:25 Mo 06.02.2012 | Autor: | selinaCC |
ja bin ich :)
nochmal zur d)
ich denke das müsste so gehen:
[mm] x^8 [/mm] > [mm] y^7 [/mm] > x^2y^4z > [mm] x^6 [/mm] > [mm] y^6 [/mm] > xy^4z > [mm] x^2y^2x^2
[/mm]
erstes ordnungskriterium ist der Grad...
und zweites ist dann invers lexikographisch.
und deg g = deg f -> g >a
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:21 Di 07.02.2012 | Autor: | felixf |
Moin!
> ja bin ich :)
>
> nochmal zur d)
>
> ich denke das müsste so gehen:
>
> [mm]x^8[/mm] > [mm]y^7[/mm] > x^2y^4z > [mm]x^6[/mm] > [mm]y^6[/mm] > xy^4z > [mm]x^2y^2x^2[/mm]
>
> erstes ordnungskriterium ist der Grad...
> und zweites ist dann invers lexikographisch.
In dem Fall kann nicht [mm] $y^6 [/mm] > x [mm] y^4 [/mm] z$ sein. Und [mm] $x^6 [/mm] > [mm] y^6$ [/mm] ebenfalls nicht.
> und deg g = deg f -> g >a
Was meinst du damit? Und was sind $f$ und $g$?
LG Felix
|
|
|
|