Monotone Funktion messbar < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei $g : [mm] \IR\to \IR$ [/mm] eine monotone Funktion. Zeigen Sie, dass g [mm] $(B(\IR),B(\IR))$-messbar [/mm] ist!
Hierbei bezeichnet [mm] B(\IR) [/mm] die von den offenen Mengen von [mm] \IR [/mm] erzeugte [mm] \sigma-Algebra. [/mm] |
Ich weiß, dass jede monotone Funktion nach einem Satz der Analysis abzählbar viele Unstetigkeitsstellen besitzt. Es reicht also zu zeigen, dass jede Funktion mit abzählbar vielen Unstetigkeitsstellen messbar ist. Doch wie zeige ich das am besten?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:31 Fr 16.05.2008 | Autor: | Marcel |
Hallo,
> Es sei [mm]g : \IR\to \IR[/mm] eine monotone Funktion. Zeigen Sie,
> dass g [mm](B(\IR),B(\IR))[/mm]-messbar ist!
>
> Hierbei bezeichnet [mm]B(\IR)[/mm] die von den offenen Mengen von
> [mm]\IR[/mm] erzeugte [mm]\sigma-Algebra.[/mm]
> Ich weiß, dass jede monotone Funktion nach einem Satz der
> Analysis abzählbar viele Unstetigkeitsstellen besitzt. Es
> reicht also zu zeigen, dass jede Funktion mit abzählbar
> vielen Unstetigkeitsstellen messbar ist. Doch wie zeige ich
> das am besten?
o.B.d.A. sei $g$ monoton wachsend (andernfalls betrachte man $f=-g$ und zeigt die Messbarkeit von $f$, welche die von $g$ impliziert (Warum?)). Vielleicht kennst Du den hier erwähnten Satz auf Seite 2:
"Nach Folgerung 1.27 (e)..." (ich hoffe das jedenfalls, andernfalls müßtest Du versuchen, ihn zu beweisen; er folgt quasi aus der Definition von Borelmengen, vgl. auch hier; bzw. die wirkliche Idee zur Begründung entnimmst Du hier dem Lemma 1.21) bzw. überlege Dir, dass [mm] $\{(-\infty,r];\;\; r \in \IR\}$ [/mm] oder meinetwegen auch [mm] $\{(-\infty,q];\;\;q \in \IQ\}$ [/mm] ein System ist, dass [mm] $B(\IR)$ [/mm] erzeugt.
(Offensichtlich nicht unwesentlich ist dabei: [mm] $\IQ$ [/mm] ist eine abzählbar dichte Teilmenge von [mm] $\IR$.)
[/mm]
D.h. schlussendlich genügt es, zu zeigen:
Für jedes $r [mm] \in \IR$ [/mm] ist [mm] $g^{-1}((-\infty,r]) \in B(\IR)$. [/mm] Und wenn Du nun Deinen obigen Satz zu Rate ziehst, solltest Du das schnell einsehen (weil man damit [mm] $g^{-1}((-\infty,r])$ [/mm] als abzählbare Vereinigung von Intervallen schreiben kann, und Intervalle sind Borelmessbar.
(Warum erfüllt ein jedes Intervall $I [mm] \subset \IR$ [/mm] (egal ob offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), dass $I [mm] \in B(\IR)$? [/mm] Naja, wenn es Dir nicht klar ist, mach' Dir wieder jeweils klar, dass das System der jeweiligen Intervalle "Was?" erzeugt?).
Schlussendlich: Was gilt denn für eine abzählbare Vereinigung messbarer Mengen?
Gruß,
Marcel
|
|
|
|
|
Vielen Dank... Das hat mir sehr geholfen und kann die Aufgabe jetzt ordentlich aufschreiben!> Hallo,
Gruß Franky
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:46 Fr 16.05.2008 | Autor: | Marcel |
Hallo,
> Vielen Dank... Das hat mir sehr geholfen und kann die
> Aufgabe jetzt ordentlich aufschreiben!> Hallo,
das ist gut Ich hoffe aber auch, dass Dir das Prinzip hier klargeworden ist. Denn derartige Dinge werden (ggf. auch in etwas *veränderter* Form) in der Wahrscheinlichkeitstheorie (bzw. Maß- und Integrationstheorie) sehr gerne mal verwendet. Aber wenn man ein derartiges Prinzip einmal verstanden hat, vergisst man es eigentlich nicht mehr so schnell. Und was wird hier auch verwendet? Das für eine Sigma-Algebra gilt: Eine abzählbare Vereinigung ...
Gruß,
Marcel
|
|
|
|