www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieMonotone Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - Monotone Konvergenz
Monotone Konvergenz < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotone Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Do 13.05.2010
Autor: physicus

Hallo Zusammen

Ich habe eine Frage zum monotonen Konvergenz Theorem.
Was ist, wenn ich eine Komposition von Funktionen habe. Sagen wir:

[mm] \phi(f_n(x)) \le \phi(f_{n+1}(x))[/mm]

wobei [mm] \phi [/mm] stetig, nicht negative und monoton steigend ist. Die [mm] (f_n) [/mm] sind messbare nicht negative Funktionen (ebenfalls monoton wachsend) die punktweise gegen ein [mm] f [/mm] konvergieren und [mm] \phi(f_n) [/mm] konvergieren punktweise gegen [mm] \phi(f) [/mm] (Aufgrund der Stetigkeit von [mm] \phi [/mm].)

Wieso gilt dann:

[mm] \integral \phi(f_n(x)) d\mu \to \integral \phi(f)) d\mu [/mm]

Mir ist nicht ganz klar, wieso ich hier Monotone Konvergenz anwenden darf. Sprich Limes und Integral vertauschen kann. Bei der Komposition handelt es sich ja nicht mehr um eine messbare Funktion. Danke für die Hilfe!

        
Bezug
Monotone Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:05 Sa 15.05.2010
Autor: dazivo

Hallo!

Es ist nicht ganz klar mit welcher sigma-Algebra du arbeitest. Ich gehe jetzt mal davon aus, dass du auf einem topologischen Raum mit entsprechender Borel sigma-Algebra arbeitest.

Dann ist die Komposition von [mm] $f_n$ [/mm] und [mm] $\phi$ [/mm] eine Borel messbare funktion, denn jede stetige (bezüglich der Topologie deines Raumes)  Funktion ist insbesondere Borel messbar (diese Tatsache lässt sich am einfachsten mit Definition von Messbarkeit einer Funktion zeigen).
Die Messbarkeit, die Monotonie und die [mm] $\mu$-f.ü. [/mm] Konvergenz deiner [mm] $\phi \circ f_n$, [/mm]  berechtigt dich Monotone Konvergenz anwenden zu können.

Ich hoffe, ich konnte Licht in die Sache bringen.

Gruss dazivo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]