www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieMonotone Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Monotone Konvergenz
Monotone Konvergenz < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotone Konvergenz: Hilfe beim Beweis
Status: (Frage) überfällig Status 
Datum: 16:53 Sa 18.12.2010
Autor: schneva

Aufgabe
Es sei [mm] ($\Omega$, $\mathscr{A}$, $\mu$) [/mm] ein Maßraum und es sei $({ [mm] f_n})_{n{\in}{\mathds{N}}}$ [/mm] eine monoton wachsende Folge von Funktionen aus [mm] $\mathscr{E}$*. [/mm] Dann gilt

[mm] $\displaystyle\sup_{n\in\mathds{N}} \int{f_n} \!\ d\mu$ [/mm] = [mm] $\displaystyle\int\sup_{n\in\mathds{N}}{f_n} \!\ d\mu$ [/mm]

Hallo,

ich soll den Satz der monotonen Konvergenz mit allen nötigen Zwischenschritten beweisen.

[mm] $\mathscr{E}$* [/mm] ist die Menge aller numerischen Funktionen $ [mm] f\ge0$ [/mm] auf $ [mm] \Omega [/mm] $ zu welchen eine isotone Folge $ [mm] ({v_n}) [/mm] $ von Elementarfunktionen $ [mm] ({v_n})\in \mathscr{E}$ [/mm] exitiert mit [mm] $f=\sup{v_n}$. $\mathscr{E}$ [/mm] ist die Menge aller Elementarfunktionen.


Ich hab mir den Beweis von Heinz Bauer "Maß- und Integrationstheorie" durchgelesen und noch ein paar Fragen dazu in der Hoffnung, dass sie mir jemand beantworten kann.

Als erstes wird
[mm] $f:=\sup{f_n}$ [/mm]


Es heißt in dem Beweis, dass wenn $ [mm] \sup{v_n}=f [/mm] $ und [mm] ${v_n}\le{f_n} [/mm] $ gilt, dass dann f in [mm] $\mathscr{E}$* [/mm] liegt und dass [mm] $\int [/mm] f [mm] d\mu [/mm] = [mm] \sup\int{v_n} d\mu$ [/mm] und [mm] $\int{v_n}d\mu \le \int{f_n}d\mu$ [/mm] nach der Definition vom Integral gilt.

(1) Daraus folgt dann, dass [mm] $\int fd\mu \le \sup\int{f_n}d\mu$ [/mm]
Folgt das dann daraus, weil [mm] $\int [/mm] f [mm] d\mu [/mm] = [mm] \sup\int{v_n} d\mu$ [/mm] und [mm] ${v_n}\le{f_n} [/mm] $ und somit $ [mm] \int [/mm] f [mm] d\mu= \sup\int{v_n} d\mu \le \sup\int{f_n}d\mu$ [/mm] ist?

(2) Weil [mm] ${f_n} \le [/mm] f$ ist, ist nach der Definition vom Integral [mm] $\sup\int{f_n}d\mu\le \int [/mm] f [mm] d\mu$. [/mm] Wieso ist das so?

(3) Die Existenz einer isotonen Folge [mm] $({v_n})$ [/mm] von Funktionen aus [mm] $\mathscr{E}$* [/mm] muss nachgewiesen werden, mit folgender Bedingung: [mm] $\sup{v_n}=f$ [/mm] und [mm] ${v_n}\le{f_n}$ [/mm] für alle [mm] $n\in\mathds{N}$ [/mm] Zu jedem [mm] {f_n} [/mm] gibt es nach Definition eine monoton wachsende Folge [mm] {u_m_n} [/mm] m=1,2,... von Funktionen aus [mm] $\mathscr{E}$ [/mm] mit [mm] $\sup{u_m_n} [/mm] = [mm] {f_n}$. [/mm] Gilt das wohl dann nach der Definition von [mm] $\mathscr{E}$*?? [/mm]

(4) Die Funktion [mm] {v_m}:= $\sup({u_m_1},...,{u_m_m})$ [/mm] in [mm] $\mathscr{E}$(m=1,2,...). [/mm] Die Isotonie der Folgen [mm] {(u_m_n)} [/mm] m=1,2,... zieht dann die Isotonie von [mm] (v_m) [/mm] nach sich. Wieso zieht das die Isotonie nach sich? Aus der Isotonie von [mm] (f_m) [/mm] folgt [mm] {v_m}\le{f_m} [/mm] für alle m und damit [mm] $\sup{v_m}\le [/mm] f$. Wo kommt plötzlich das [mm] (f_m) [/mm] her?

(5) Für alle $m [mm] \ge [/mm] n$ hat man [mm] {u_m_n} \le{v_m} [/mm] (Wieso?) und somit dann [mm] $\sup{u_m_n}={f_n}\le\sup{v_m}$ [/mm] n=1,2,....
Heißt das, dass [mm] ${f_n}\le\sup{v_m}\le [/mm] f$ ist wegen [mm] $m\ge [/mm] n$?

(6) Wieso ergibt sich daraus dann [mm] \sup{v_m}=f [/mm] ?

Ich hoffe mir kann jemand weiterhelfen, danke schonmal!

Liebe Grüße,
schneva

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Monotone Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 23.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]