www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteMonotonie bei FOlgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Monotonie bei FOlgen
Monotonie bei FOlgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie bei FOlgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Do 12.10.2006
Autor: Mamoe

Aufgabe
Ab welchem Folgenglied ist die Folge monoton?

a [mm] \cap [/mm] = 16 -  2 ^ [mm] \cap [/mm]

b [mm] \cap [/mm] = [mm] 12\cap [/mm] - [mm] \cap [/mm] ²

c [mm] \cap [/mm] = [mm] (\cap-5)² [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Das ist eine Zusatzaufgabe die wir erledigen können wenn wir wollen und mich interessiert das aber ich finde keinen Ansatz und finde daher auch keine Lsöung....Bitte um Hilfe

        
Bezug
Monotonie bei FOlgen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Do 12.10.2006
Autor: ullim

Hi Mamoe,

ich geh mal davon aus das Du folgende Folgen meinst:

I)   [mm] a_n=16-2^n [/mm]

II)  [mm] b_n=12n-n^2 [/mm]

III) [mm] c_n=(n-5)^2 [/mm]

Bei I) ist die Lage klar, da [mm] 2^n [/mm] immer größer wird, wird [mm] a_n [/mm] immer kleiner und zwar schon ab dem ersten Index.

Bei den anderen beiden Folgen kann man prüfen in welchem Verhältnis [mm] a_n [/mm] zu [mm] a_{n+1} [/mm] steht.

Bei II) ergibt sich folgendes

[mm] \bruch{a_n}{a_{n+1}}=\bruch{n(12-n)}{n(12-n)+11-2n} [/mm] also ist [mm] a_n [/mm] monoton fallend ab dem Index [mm] n_0, [/mm] ab dem [mm] 11-2n\le0 [/mm] gilt. Dies ist ab [mm] n_0=6 [/mm] der Fall.

III) kann man ähnlich lösen.

mfg ullim

Bezug
                
Bezug
Monotonie bei FOlgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Fr 13.10.2006
Autor: Mamoe

Guten Abend und schonmal vielen Dank. Deine Rechnung kann ich schon nachvollziehen  dafür schonmal vielen Dank =) aber der Denkansatz fehlt mir.... also ich wüsste von allein nicht wie ich darauf kommen kann....kannst du mir vll einen Tipp geben wie ich auf sowas kommen kann bzw. wie ich sowas erkenne ??? Das wäre sehr nett...

MFG

Bezug
                        
Bezug
Monotonie bei FOlgen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Fr 13.10.2006
Autor: ullim

Hi Mamoe,

vielleicht ist der Ansatz [mm] a_n\sim a_{n+1} [/mm] besser, als der, den ich in der Antwort gewählt habe.

Mit obigem Ansatz würde gelten

[mm] 12n-n^2\sim12(n+1)-(n+1)^2 [/mm] was äquivalent ist zu

[mm] n\sim\bruch{11}{2} [/mm] also n=6 bei einer fallenden Folge.


mfg ullim



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]