www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikMoore-Penrose Inverse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Numerik" - Moore-Penrose Inverse
Moore-Penrose Inverse < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Moore-Penrose Inverse: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:24 Di 22.05.2012
Autor: littleBee

Aufgabe
Sei [mm] A^+ [/mm] die Moore-Penrose Inverse der Matrix A. Zeigen sie die Aussagen:
(i) [mm] A A^+ A = A [/mm]
(ii) Ist A eine normale nxn- Matrix, d.h. [mm] A^T A = A A^T [/mm], so gilt [mm] A A^+ = A^+ A [/mm]

Mein Problem hierbei ist folgendes:
(i) kenne ich eigentlich nur als Bestandteil der Definition von der Moore-Penrose Inversen und kann es nur zeigen für eine Matrix, die vollen Rang hat.
Ansonsten stehe ich auf dem Schlauch.
Wir haben die Moore-Penrose Inverse definiert als lineare Abbildung, welche b auf [mm]x^+[/mm] abbildet. Wobei [mm]x^+[/mm] die verallgemeinerte Lösung von Ax=b ist, dh. 1) [mm]x^+[/mm] ist kleinste Quadrate Lösung und 2) unter allen kleinste Quadrate Lösungen von Ax=b hat [mm]x^+[/mm] die kleinste Norm.

Bei (ii) weiß ich erst gar nicht, wo ich mit meiner Voraussetzung ansetzen soll. Wo finde ich ein [mm] A^T [/mm] ?

Vielen Dank jetzt schon mal für die Hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Moore-Penrose Inverse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:55 Di 22.05.2012
Autor: hippias

Zu 1) Muessen zeigen, dass [mm] $AA^{+}Ax= [/mm] Ax$ fuer alle $x$ gilt. Mit $b:= Ax$ ist also [mm] $A^{+}b$ [/mm] die kleinst Quadrate Loesung von $Au= b$ mit kleinster Norm. Da aber $x$ eine Loesung von $Au= b= Ax$ ist, gilt [mm] $A^{+}b= [/mm] x+ k$ wobei $k$ aus dem Kern von $A$ ist.Jetzt musst Du nur nocheinmal $A$ anwenden.

Bezug
        
Bezug
Moore-Penrose Inverse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 24.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]