Münzwurf < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es gibt einen Taler mit 1 auf der einen Seite und mit 2 auf der anderen Seite.
2 Spieler können sich für eine der 4 Möglichkeiten entscheiden:
(1,1), (1,2l),(2,1) und (2,2).
Der Taler wird mehrmals geworfen.
Sieger ist der, dessen Auswahl als erstes hintereinander auftritt.
Wie sind die Gewinnchancen bei den Möglichkeiten?
Schreiben Sie in ein Raster alle möglichen Gewinnchancen bei den jeweiligen Auswahl. |
Also der Versuch ist doch eigentlich ein Münzwurf.
Die Chancen sind 50:50.
Verstehe nicht genau, was die von mir wollen bzw. wie ich bei der Aufgabe anfange.
LG
|
|
|
|
Hallo Wuschlafin,
bei dem Spiel wird die Münze ganz oft geworfen. Jeder Spieler kann sich jetzt eine der genannten Zweierkombinationen aussuchen und wenn die kommt, gewinnt er.
Beispiel: Spieler 1 sucht sich (1/1) aus, Spieler 2 (2/1).
Münze wird geworfen: 1 - 2 - 2 - 2 - 1
Dann hätte jetzt nach dem 5. Wurf Spieler 2 gewonnen, weil zum ersten Mal die Folge (2/1) auftaucht. Wäre im zweiten Wurf eine 1 gefallen, hätte Spieler 1 gewonnen.
Und schon ein Tipp:
Dir fällt sicher auf, dass Spieler 1 keine Gewinnchance mehr hat, sobald eine 2 gefallen ist - denn kommt eine weitere 2, wird weiter geworfen und kommt eine 1, gewinnt der andere.
Das sieht so aus, als hätte Spieler 2 eine geschicktere Wahl getroffen. Mit der Rechnung sollst du jetzt rausfinden, ob das wirklich so ist.
Gruß,
weightgainer
|
|
|
|
|
Ok das hab ich alles verstanden.
Nur wie rechne ich das denn aus?
mit einem Baumdiagramm?
|
|
|
|
|
Ein Baumdiagramm ist schwierig, da du nicht weißt, wie viele Würfe es geben wird.
Ich kenne deine Voraussetzungen nicht so genau, von daher mache ich jetzt mal einen Basis-Vorschlag:
Du hast zwei Spieler, die sich aus den 4 Möglichkeiten jeweils eine aussuchen. Es gibt dann 6 verschiedene Kombinationsmöglichkeiten bei dieser Auswahl. Im Prinzip kannst du jetzt für alle 6 Möglichkeiten die W-keiten nachrechnen.
Beispiel: Spieler 1 wählt (1/1), Spieler 2 wählt (1/2)
Wenn jetzt eine 2 im ersten Wurf fällt, interessiert das beide garnicht, denn sie brauchen beide als erstes eine 1. Die ganzen Würfe kann man also getrost ignorieren (man könnte sagen, dass sich die Gewinnsituation für beide nicht ändert). Erst wenn eine 1 fällt, wird es interessant. Jetzt wird im nächsten Wurf in jedem Fall einer der beiden gewinnen. Die Chance für jeden ist im zweiten Wurf [mm] \bruch{1}{2}, [/mm] d.h. insgesamt haben beide hier eine Chance von [mm] \bruch{1}{2}. [/mm] Aufgepasst: wenn ich hier sage "im zweiten Wurf", dann kann das auch der 100. Wurf sein, wenn halt erst 98 Zweier kamen, dann die eine 1 und dann der 100. Wurf entscheidet. Nur sind die ersten 98 Würfe für beide Spieler nicht interessant.
Noch ein Beispiel: Spieler 1 wählt (1/1), Spieler 2 wählt (2/1).
Jetzt verändert der erste Wurf bereits die Gewinnwahrscheinlichkeit für die beiden: fällt eine 1 (mit W-keit [mm] \bruch{1}{2}), [/mm] dann kann der Spieler 1 im nächsten Wurf (1 kommt mit W-keit [mm] \bruch{1}{2}) [/mm] gewinnen, hat also eine Chance von [mm] \bruch{1}{4}. [/mm] Logischerweise müsste Spieler 2 dann eine Chance von [mm] \bruch{3}{4} [/mm] haben. Rechnen wir mal nach:
Wenn im ersten Wurf eine 1 fällt (W-keit [mm] \bruch{1}{2}), [/mm] im zweiten eine 2 (mit W-keit [mm] \bruch{1}{2}), [/mm] dann gewinnt er auf jeden Fall (s. meine andere Antwort), d.h. dieser Fall tritt mit [mm] \bruch{1}{4} [/mm] ein. Wenn im ersten Wurf eine 2 fällt (W-keit [mm] \bruch{1}{2}), [/mm] dann gewinnt er auch in jedem Fall. Also gewinnt er insgesamt in [mm] \bruch{1}{4}+\bruch{1}{2}=\bruch{3}{4} [/mm] aller Fälle.
So kannst du die anderen 4 Fälle auch betrachten - man kann das noch einschränken, weil bei manchen das gleiche rauskommt, aber die Gedanken würde ich mir machen, wenn ich alle 6 gerechnet habe.
Gruß,
weightgainer
|
|
|
|
|
Also meiner Meinung gibt es doch 12 Möglichkeiten:
11,12 50:50
11,21 25:75
11,22 50:50
21,11 75:25
21,12 50:50
21,22 50:50
12,11 50:50
12,21 50:50
12,22 75:25
22,11 50:50
22,12 25:75
22,21 50:50
Hab dann mal alle Wahrscheinlichkeiten bestimmt.
Kommt 8 mal 50:50 raus und 4 mal 25:75.
Stimmt das?
|
|
|
|
|
Ja klar,
ich hab halt nicht mehr unterschieden, ob jetzt Spieler 1 die 1/1 aussucht und Spieler 2 die 2/1 oder umgekehrt. So bekommst du dann natürlich doppelt so viele Fälle wie ich. Das muss man eigentlich nicht rechnen, weil die gleichen W-keiten rauskommen, nur eben für den jeweils anderen Spieler.
Wenn du jetzt gruppierst, siehst du:
1. Fall: beide haben die gleiche Zahl als erste ausgewählt --> 50:50 Chance
2. Fall: beide haben erste Zahl unterschiedlich und zweite unterschiedlich --> 50:50 Chance.
3. Fall: beide haben erste Zahl unterschiedlich und zweite Zahl gleich --> 75:25 Chance.
Ich wüsste nicht, wie man das jetzt noch weiter "vereinheitlichen" könnte, um nur einen einzigen Fall daraus zu machen. Du siehst aber auch, dass dich maximal drei Würfe interessieren, selbst wenn die Münze 100x geworfen wurde.
Übrigens kannst du das in einem Zustandsdiagramm darstellen (aber auch nur jeden Fall einzeln) - das ist das Mittel der Wahl bei diesen Aufgabenstellungen, falls du das kennst (und weißt, wie man damit umgeht).
Gruß,
weightgainer
|
|
|
|