www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikMultivariate Normalverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "mathematische Statistik" - Multivariate Normalverteilung
Multivariate Normalverteilung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multivariate Normalverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:37 Mi 28.01.2015
Autor: luis52

Aufgabe
Der Zufallsvektor [mm] $\mathbf{x}$ [/mm] sei $p$-variat normalverteilt mit [mm] $\operatorname{E}[\mathbf{x}]=\mathbf{\mu}$ [/mm] und [mm] $\operatorname{Var}[\mathbf{x}]=\mathbf{\Sigma}$. [/mm]

(a) Ist [mm] $\mathbf{a}\in\IR^p$ [/mm] ein fester Vektor, so  ist

[mm] $f=\frac{\mathbf{a}'(\mathbf{x}-\mathbf{\mu})}{\mathbf{a}'\mathbf{\Sigma}\mathbf{a}}$ [/mm]

standardnormalverteilt.

(b) Sei [mm] $\mathbf{a}\in\IR^p$ [/mm] ein Zufallsvektor, der unabhaengig ist von [mm] $\mathbf{x}$. [/mm] Gilt [mm] $P(\mathbf{a}'\mathbf{\Sigma}\mathbf{a}=0)=0$, [/mm] so ist $f_$ standardnormalverteilt und unabhaengig von [mm] $\mathbf{x}$. [/mm]

(c) Ist [mm] $\mathbf{\mu}=\mathbf{0}$ [/mm] und [mm] $\mathbf{\Sigma}=\mathbf{I}_3$, [/mm] so ist

[mm] $\frac{x_1\exp(x_3)+x_2\log|x_3|}{\exp(2x_3)+\sqrt{\log|x_3|}} [/mm]

standardnormalverteilt.

Moin allerseits, heute stelle ich mal eine Aufgabe rein, ueber deren
Loesung ich schon einige Zeit nachdenke. Vielleicht ist sie ja
offensichtlich, aber ich bin wie vernagelt.

Sie stammt aus

@BOOK{Mardia79,
  title = {Multivariate Analysis},
  publisher = {Academic Press},
  year = {1979},
  author = {K.V. Mardia and J.T. Kent and J.M. Bibby},
  address = {London, San Diego}
}

Seite 86.


(a) ist klar.

(b) Hier koennte man vielleicht ueber die bedingte Verteilung argumentieren und  (a) anwenden ...

(c) Keinen Schimmer ...
              

P.S. und Off-Topic: Wieso liefert $\mathbf{\Sigma}$ ein fettes [mm] $\mathbf{\Sigma}$,[/mm]  $\mathbf{\mu}$ aber kein fettes [mm] $\mathbf{\mu}$? [/mm]

        
Bezug
Multivariate Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Mi 28.01.2015
Autor: hanspeter.schmid

Was meinst Du mit $ [mm] P(\mathbf{a}'\mathbf{\Sigma}\mathbf{a}=0)=0 [/mm] $ genau?

[mm] $\mathbf{a}'\mathbf{\Sigma}\mathbf{a}$ [/mm] ist eine reelle Zahl, oder?

Zur off-topic-Frage: verwende pmb statt mathbf:

[mm] $\pmb{\mu}$ [/mm] vs [mm] $\mathbf{\mu}$ [/mm]

Gruss,
Hanspeter

Bezug
                
Bezug
Multivariate Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:56 Mi 28.01.2015
Autor: luis52


> Was meinst Du mit
> [mm]P(\mathbf{a}'\mathbf{\Sigma}\mathbf{a}=0)=0[/mm] genau?
>  
> [mm]\mathbf{a}'\mathbf{\Sigma}\mathbf{a}[/mm] ist eine reelle Zahl,
> oder?
>
>

Moin, bei bei (b) ist [mm] $\mathbf{a}$ [/mm] ein $p$-elementiger Zufallsvektor.

Danke fuer TeXnische Hilfe.

Bezug
                        
Bezug
Multivariate Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:54 Do 29.01.2015
Autor: hanspeter.schmid


> > Was meinst Du mit
> > [mm]P(\mathbf{a}'\mathbf{\Sigma}\mathbf{a}=0)=0[/mm] genau?
>  >  
> > [mm]\mathbf{a}'\mathbf{\Sigma}\mathbf{a}[/mm] ist eine reelle Zahl,
> > oder?
>
> Moin, bei bei (b) ist [mm]\mathbf{a}[/mm] ein [mm]p[/mm]-elementiger
> Zufallsvektor.

Du hättest also auch "ja" schreiben können, denn dann ist [mm]\mathbf{a}'\mathbf{\Sigma}\mathbf{a}[/mm] ist eine reelle Zahl.

Nun ist aber [mm]P(\mathbf{a}'\mathbf{\Sigma}\mathbf{a}=0)=0[/mm] immer der Fall, wenn die W'keitsdichte von  [mm]\mathbf{a}'\mathbf{\Sigma}\mathbf{a}[/mm] an dem Punkt endlich ist. Es bräuchte einen Diracstoss oder ähnlich damit das nicht eintritt. Was soll also diese Bedingung?

> Danke fuer TeXnische Hilfe.

Gern geschehen.


Bezug
        
Bezug
Multivariate Normalverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 30.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]