www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNachweis Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Nachweis Basis
Nachweis Basis < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis Basis: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:33 Mo 26.11.2007
Autor: easy_f

Aufgabe
Für den zweielementigen Körper K:=GF(2) betrachte man den K-Vektorraum V:=K³.
(a) Zeigen Sie, dass die Vektoren e1:=(1,0,0), e2:=(0,1,0), e3:=(0,0,1) eine Basis von V bilden.
(b) Sei e4:=(1,1,1). Zeigen Sie, dass jede dreielementige Teilmenge der Menge E:={e1,e2,e3,e4} linear unabhängig ist. Ist auch E selbst linear unabhängig?

Ich habe schon gezeigt, dass es linear unabhängig ist und jetzt muss man ja noch zeigen, dass es eine Basis ist, was man ja eigentlich schon sieht. Deshalb ist meine Frage, wie ich das zeigen kann, geht das z.B.: mit einem linearen Gleichungssystem?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nachweis Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Mo 26.11.2007
Autor: angela.h.b.


> Für den zweielementigen Körper K:=GF(2) betrachte man den
> K-Vektorraum V:=K³.
>  (a) Zeigen Sie, dass die Vektoren e1:=(1,0,0),
> e2:=(0,1,0), e3:=(0,0,1) eine Basis von V bilden.
>  (b) Sei e4:=(1,1,1). Zeigen Sie, dass jede dreielementige
> Teilmenge der Menge E:={e1,e2,e3,e4} linear unabhängig ist.
> Ist auch E selbst linear unabhängig?
>  
> Ich habe schon gezeigt, dass es linear unabhängig ist und
> jetzt muss man ja noch zeigen, dass es eine Basis ist,

Hallo,

Du mußt nun noch zeigen, daß das ein Erzeugendensystem ist, daß man jeden Vektor [mm] \vektor{x \\ y\\z} [/mm] als Linearkombination v. Vektoren Deiner Menge schreiben kann.

(Dein Vektorraum ist ja so übersichtlich, daß Du im Prinzip für jedes Element die Linearkombination angeben könntest.)

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]