www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNachweis von Berührpunkten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Nachweis von Berührpunkten
Nachweis von Berührpunkten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis von Berührpunkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Di 10.09.2013
Autor: mathe96

Aufgabe
Zeigen Sie, dass sich f(x)= [mm] x^2+1 [/mm] und g(x)= [mm] 1-x^3 [/mm] auf der y-Achse berühren.

Hallo :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Wir haben zu morgen eine Mathe-Hausaufgabe aufbekommen, welche ich nicht ganz verstehe. Nichtsdestotrotz habe ich versucht einen Rechenweg zu finden. Zuerst habe ich versucht die Funktionsterme gleichzusetzen?

[mm] x^2+1 [/mm] = [mm] 1-x^3 [/mm]  | -1
[mm] x^2 [/mm]     = [mm] x^3 [/mm]       | [mm] -x^2 [/mm]
0         = [mm] x^2+x^3 [/mm]

Ich habe mir überlegt jetzt die pq-Formell anzuwenden, aber da sind ja nur die Variablen x verfügbar. Ab da weiß ich nicht mehr weiter. Vielen Dank für eure Hilfe :)

        
Bezug
Nachweis von Berührpunkten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Di 10.09.2013
Autor: Valerie20


> Zeigen Sie, dass sich f(x)= [mm]x^2+1[/mm] und g(x)= [mm]1-x^3[/mm] auf der
> y-Achse berühren.


> verstehe. Nichtsdestotrotz habe ich versucht einen
> Rechenweg zu finden. Zuerst habe ich versucht die
> Funktionsterme gleichzusetzen?

Das ist doch schonmal super.

>

> [mm]x^2+1[/mm] = [mm]1-x^3[/mm] | -1
> [mm]x^2[/mm] = [mm]x^3[/mm] | [mm]-x^2[/mm]
> 0 = [mm]x^2+x^3[/mm]

>

Der Ansatz würde hier sogar auch funktionieren.
Du könntest über eine Doppelte Nullstelle im Punkt $x=0$ argumentieren.

Was du normalerweise bei der Nullstellenberchnung machst ist, dass du zwei funktionen gleich setzt. Nämlich $f(x)=0$ (die x-Achse) und eine Funktion (meinetwegen [mm] $g(x)=x^2$. [/mm] Mit der pq-Formel berechnest du dir dann die Schnittstellen mit der x-Achse.

Was du nun gemacht hast, ist zwei Funktionen gleichzusetzen. Du berechnest also die Schnittpunkte der beiden Funktionen.

Also: [mm] $0=x^2(1+x)$ [/mm]


Allerdings ist das nicht der allgemeine Ansatz. Dieser lautet so:

Du musst hier zwei Bedingungen überprüfen:

1. $f(0)=g(0)$
2. $f'(0)=g'(0)$

Zu 1.:
Dies ist zu tun, da überprüft werden soll, ob sich die Graphen auf der y-Achse berühren. Dort hat x den Wert 0.

Zu 2.:
Wenn die Steigugen an dieser Stelle gleich sind, so berühren sich die Graphen und schneiden sich nicht.


Valerie
 

Bezug
                
Bezug
Nachweis von Berührpunkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Di 10.09.2013
Autor: mathe96

Hallo, erstmal vielen Dank für die schnelle Hilfe bzw. der Beantwortung meiner Frage. Habe ich dich richtig verstanden ich müsste (1. Bedingung) für x= 0 einsetzen.

Also f(x)= [mm] 0^2+1 [/mm]
             = 1           und
       [mm] g(x)=1-0^3 [/mm]
             = 1

Beide Graphen berühren sich, weil sie den Punkt 0 haben (Bedingung 1 erfüllt)
Das gleiche habe ich jetzt mit der Ableitungsfunktion der Funktionen gemacht.

f'(x) = x
   x=0

g'(x) = [mm] -3x^2 [/mm]
        = [mm] -3*0^3 [/mm] = 0
        = 0

Die Steigungen an dieser Stelle sind gleich, das bedeutet das sie sich nicht berühren. Ist so weit alles richtig?

Bezug
                        
Bezug
Nachweis von Berührpunkten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Di 10.09.2013
Autor: Steffi21

Hallo,
die 1. Bedingung hast du gezeigt

[mm] f(x)=x^2+1 [/mm] und [mm] g(x)=1-x^3 [/mm]

f(0)=1=g(0)

die 2. Bedingung ist so nicht korrekt

f'(x)=2x und [mm] g'(x)=-3x^2 [/mm]

f'(0)=0=g'(0)

somit ist der Nachweis erbracht, die Funktionen berühren sich an der Stelle x=0, also auf der y-Achse

Steffi






Bezug
                                
Bezug
Nachweis von Berührpunkten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 Di 10.09.2013
Autor: mathe96

Super, vielen lieben Dank für eure Hilfe. Habe es jetzt verstanden.
Euch noch einen schönen Abend.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]