www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenNäherungsformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Näherungsformel
Näherungsformel < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Näherungsformel: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:30 Mi 15.06.2005
Autor: simone1000

Hallo,
ich habe schon hin und hergerechnet komme aber auf keine Lösung.
Kann mir jemand helfen?

Für die Geschw. v eines frei fallenden Körpers gilt beim geschwindigkeitsproportionalen Luftwiderstand:
v=(v0-mg/k)*e hoch -kt/m+ m*g/k
Ermitteln sie eine für kt/m<<1 gültige Näherungsformel für v, indem sie die Funktion f(t)= e hoch -kt/m in einem Näherungspolynom 1. ordnung entwickeln.
k=Luftwiderstandszahl
Gruß Simone

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Näherungsformel: Exponentialreihe
Status: (Antwort) fertig Status 
Datum: 22:16 Mi 15.06.2005
Autor: Loddar

Hallo Simone,

[willkommenmr] !!


> Für die Geschw. v eines frei fallenden Körpers gilt beim
> geschwindigkeitsproportionalen Luftwiderstand:
> v=(v0-mg/k)*e hoch -kt/m+ m*g/k

Bitte benutze doch auch unseren Formeleditor. Damit sieht das schon viel schöner und übersichtlicher aus:

[mm] $v(t)=\left(v_0-\bruch{m*g}{k}\right)*e^{-\bruch{k*t}{m}}+ \bruch{m*g}{k}$ [/mm]

Wenn Du meine Formel mal anklickst, kannst Du die Schreibweise sehen!


> Ermitteln sie eine für kt/m<<1 gültige Näherungsformel für
> v, indem sie die Funktion f(t)= e hoch -kt/m in einem
> Näherungspolynom 1. ordnung entwickeln.
> k=Luftwiderstandszahl

Soll das wirklich bei einem Näherungspolynom 1. Ordnung verbleiben? [kopfkratz3]


Für die Exponentialfunktion [mm] $e^x$ [/mm] gilt folgende Exponentialreihe
(Herleitung über MacLaurin'sche Reihenentwicklung):

[mm] $e^x [/mm] \ = \ 1 + [mm] \bruch{x}{1!} [/mm] + [mm] \bruch{x^2}{2!} [/mm] + [mm] \bruch{x^3}{3!} [/mm] + ... + [mm] \bruch{x^n}{n!} [/mm] + ...$


Für ein Näherungspolynom 1. Ordnung verbleibt also:

[mm] $e^x [/mm] \ [mm] \approx [/mm] \ \ 1 + [mm] \bruch{x}{1!} [/mm] \ = \ 1+x$
(Diese Näherung gilt aber nur für Werte sehr nahe bei $x \ [mm] \approx [/mm] \ 0$ !!)


Wenn Du nun für x einsetzt: $x \ = \ [mm] -\bruch{k*t}{m}$, [/mm] hast Du Deine Näherung für $f(t)$ .

Diesen Term dann wiederum einsetzen in Deine Ausgangsfunktion für die Geschwindigkeit $v(t)$.


Was erhältst Du?


Gruß
Loddar


Bezug
                
Bezug
Näherungsformel: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Mi 15.06.2005
Autor: simone1000

Ich mach das jetzt mal so.Hoffe ich hab das gerafft und bekomme das hin.
Danke.Gruß Simone

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]