www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenNäherungsfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Näherungsfunktionen
Näherungsfunktionen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Näherungsfunktionen: x gegen +- unendlich
Status: (Frage) beantwortet Status 
Datum: 12:58 Sa 14.11.2009
Autor: MaLinkaja

Aufgabe
n<m

n=1 und m=2

f(x)= [mm] \bruch{3x}{x^2+1} [/mm]
[edit: informix]


Was beudeten n und m?
Wo finden sich die Werte von n und m wieder?
Wie tragen sie zu dem Endergebniss bei?

Woran erkenn ich das

[mm] \limes_{x\rightarrow \pm \infty} [/mm] f(x) = 0 ist?

und das es sich hierbei um eine waagerechte Asymptote der x-Achse mit y= 0 handelt?

        
Bezug
Näherungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Sa 14.11.2009
Autor: ChopSuey

Hallo,

verzichte bei Hochzahlen bitte IMMER auf diese doofen Tastaturexponenten. Man stellt immer erst mitten im Antworten fest, dass die Funktion/Folge um die es sich handelt eine ganz andere ist, als anfangs gedacht. -.- Schreibe $\ [mm] x^2 [/mm] $ als x ^2  ohne Leerzeichen!

> f(x)= [mm]\bruch{3x}{x²+1}[/mm]
>  Was beudeten n und m?
>  Wo finden sich die Werte von n und m wieder?
>  Wie tragen sie zu dem Endergebniss bei?

Was das $\ n $ und $\ m $ ist, kann ich dir auch nicht sagen, solange man nicht mehr erfährt. Ist das die Originalaufgabenstellung?

>  
> Woran erkenn ich das
>  
> [mm]\limes_{x\rightarrow \pm \infty}[/mm] f(x) = 0 ist?
>  
> und das es sich hierbei um eine waagerechte Asymptote der
> x-Achse mit y= 0 handelt?

$\ f(x)=  [mm] \bruch{3x}{x^2+1} [/mm] $

$\ [mm] \limes_{x\rightarrow \pm \infty}f(x) [/mm]  = [mm] \limes_{x\rightarrow \pm \infty}\left(\bruch{3x}{x^2+1} \right) [/mm] $

Klammer' $\ [mm] x^2 [/mm] $ im Nenner und Zähler aus und kürze anschliessend, dann erhältst du

$\ f(x) = [mm] \bruch{\frac{3}{x}}{1+\frac{1}{x^2}} [/mm]  $

Nun überlege, warum der Grenzwert $\ 0 $ ist, wenn $\ x [mm] \to \pm \infty [/mm] $ läuft.

Wenn $\ f(x) [mm] \to [/mm] 0 $ für alle $\ x [mm] \in \IR [/mm] $, dann ist doch Gerade $\ y = 0 $ die horizontale Asymptote.

Denk dran, dass der Grenzwert einer Funktion/Folge nie erreicht wird.

Gruß
ChopSuey



Bezug
                
Bezug
Näherungsfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Sa 14.11.2009
Autor: ChopSuey

Hallo,

an der Stelle $\ x = 0 $ ist natürlich $\ f(0) = 0 $

Gruß
ChopSuey

Bezug
        
Bezug
Näherungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Sa 14.11.2009
Autor: didda

Meines Erachtens ist der Grenzwert nicht 0, wenn du die Grenzwertsätze kennst kannst du die ja mal anweden, du wirst sehen, dass der Grenzwert 3 ist. Wenn du diese Sätze nicht kennst kannst du ja auch mal Werte für x einsetzen, so ergibt sich zum Beispiel für x=1000
[mm] \bruch{3000}{1001}=2.997 [/mm]

Wofür m und n stehen kann ich dir auch nicht sagen.

MfG

Bezug
                
Bezug
Näherungsfunktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Sa 14.11.2009
Autor: ChopSuey

Hallo didda,

die Funktion lautet $\ f(x) = [mm] \frac{3x}{x^{\red{2}} + 1} [/mm] $

Aber wegen den Tastaturhochzahlen wird der Exponent nicht angezeigt.

Grüße
ChopSuey

Bezug
        
Bezug
Näherungsfunktionen: Tipp
Status: (Antwort) fertig Status 
Datum: 13:03 Mo 16.11.2009
Autor: tiia

Hallo,

m und n dürften die jeweils höchsten Exponenten im Nenner bzw. Zähler sein.

Grüße
tiia

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]