Namensziehung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | In einer Klasse befinden sich 18 Personen.
Man schreibt jeden Namen der 18 Personen auf einen Zettel.
Nun soll 3 Mal gezogen werden.
Wie hoch ist die Wahrscheinlichkeit, dass man selbst gezogen wird? |
Hallo,
mich beschäftigt seit heute Folgendes:
In einer Klasse befinden sich 18 Personen.
Man schreibt jeden Namen der 18 Personen auf einen Zettel.
Nun soll 3 Mal gezogen werden.
Wie hoch ist die Wahrscheinlichkeit, dass man selbst gezogen wird?
Spontan hätte ich es wie folgt gerechnet:
(1/18) + (1/17) + (1/16) = 17,69 %
Die Wahrscheinlichkeit, dass man gezogen wird, wenn man einmal zieht liegt ja bei 1/18. Und beim zweiten Mal habe ich gedacht, dass es dann bei 1/17 liegt.
Jedoch würde dann nach 9,10, 11 Mal ziehen über 100% rauskommen.
Ein weiter Lösungvorschlag ist von einem Kollegen gekommen: Er meint dass 1/6 das Ergebnis sind.
Rechengang: 1/18 + (1/17-(1/18*1/17))...
Jedoch verwirrt mich diese Vorgehensweise.
Wäre dankbar, eine richtige und gute Erklärung zu erhalten!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:03 Mo 24.11.2014 | Autor: | Fulla |
Hallo Sparfuchs,
> In einer Klasse befinden sich 18 Personen.
> Man schreibt jeden Namen der 18 Personen auf einen Zettel.
> Nun soll 3 Mal gezogen werden.
> Wie hoch ist die Wahrscheinlichkeit, dass man selbst
> gezogen wird?
> Hallo,
> mich beschäftigt seit heute Folgendes:
> In einer Klasse befinden sich 18 Personen.
> Man schreibt jeden Namen der 18 Personen auf einen Zettel.
> Nun soll 3 Mal gezogen werden.
> Wie hoch ist die Wahrscheinlichkeit, dass man selbst
> gezogen wird?
>
> Spontan hätte ich es wie folgt gerechnet:
> (1/18) + (1/17) + (1/16) = 17,69 %
>
> Die Wahrscheinlichkeit, dass man gezogen wird, wenn man
> einmal zieht liegt ja bei 1/18. Und beim zweiten Mal habe
> ich gedacht, dass es dann bei 1/17 liegt.
> Jedoch würde dann nach 9,10, 11 Mal ziehen über 100%
> rauskommen.
... und das sollte dir schon mächtig verdächtig vorkommen!
Mal dir mal ein Baumdiagramm dazu und verwende die Pfadregeln. (Beachte, dass es bei manchen Ästen irgendwann nicht mehr die Auswahl zwischen "ich werde gezogen" und "wer anderes wird gezogen" gibt, sondern nur noch eine Möglichkeit.)
> Ein weiter Lösungvorschlag ist von einem Kollegen
> gekommen: Er meint dass 1/6 das Ergebnis sind.
> Rechengang: 1/18 + (1/17-(1/18*1/17))...
> Jedoch verwirrt mich diese Vorgehensweise.
Mich auch. Mir sind vor allem die "..." nicht klar, wie soll es da denn weitergehen?
Aber 1/6 ist richtig.
Hier verwendet man am geschicktesten den Trick mit dem Gegenereignis. Es gibt ja nur zwei mögliche Ausgänge: Ich werde gezogen (beim ersten, zweiten oder dritten Zug) - oder eben nicht.
"Nicht gezogen zu werden" lässt sich viel einfacher berechnen, nämlich mit [mm]P("\text{ich nicht}")=\frac{17}{18}\cdot\frac{16}{17}\cdot\frac{15}{16}=\frac{15}{18}[/mm].
Aber uns interessiert ja gerade das Gegenereignis davon, d.h. [mm]P("\text{ich}")=1-P("\text{ich nicht}")=1-\frac{15}{18}=\frac 16[/mm].
Lieben Gruß,
Fulla
|
|
|
|
|
Nach einer Diskussion mit meinem Kollegen bin ich zu folgender Lösung gekommen
die Wahrscheinlichkeit liegt tatsächlich bei 1/6
Lösungsweg:
[mm] \bruch{1}{18} [/mm] * 1 * 1 + [mm] \bruch{17}{18} [/mm] * [mm] \bruch{1}{17} [/mm] * 1 + [mm] \bruch{17}{18} [/mm] * [mm] \bruch{16}{17} [/mm] * [mm] \bruch{1}{16} [/mm]
Hat vielleicht wer einen einfacheren Lösungsansatz?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:08 Mo 24.11.2014 | Autor: | Fulla |
> Nach einer Diskussion mit meinem Kollegen bin ich zu
> folgender Lösung gekommen
> die Wahrscheinlichkeit liegt tatsächlich bei 1/6
>
> Lösungsweg:
> [mm]\bruch{1}{18}[/mm] * 1 * 1 + [mm]\bruch{17}{18}[/mm] * [mm]\bruch{1}{17}[/mm] * 1
> + [mm]\bruch{17}{18}[/mm] * [mm]\bruch{16}{17}[/mm] * [mm]\bruch{1}{16}[/mm]
>
> Hat vielleicht wer einen einfacheren Lösungsansatz?
Hallo nochmal,
was du oben vorrechnest, ist der Weg mittels Baumdiagramm. Hier musst du drei Zweige berechnen und dann addieren.
Alternativ kannst du auch den verbleibenden vierten Ast berechnen und mit dem Gegenereignis arbeiten. Das habe ich aber schon oben beschrieben...
Ich weiß nicht, was du unter "einfacher" verstehst, aber kürzer/schneller/"einfacher" als mit dem Gegenereignis wirst du wohl kaum wegkommen.
Lieben Gruß,
Fulla
|
|
|
|