www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNebenklassen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Nebenklassen
Nebenklassen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Di 16.10.2012
Autor: Kimmel

Aufgabe
Sei G eine Gruppe und H [mm] \subset [/mm] G eine Untergruppe.
Je zwei Linksnebenklassen von H in G sind gleichmächtig.

Beweis:
Für jedes a [mm] \in [/mm] G ist die Abb.: H [mm] \to [/mm] aH, bijektiv.
[...]


Warum ist die Abbildung bijektiv?
Kann mir das nicht erklären...

        
Bezug
Nebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Di 16.10.2012
Autor: fred97


> Sei G eine Gruppe und H [mm]\subset[/mm] G eine Untergruppe.
>  Je zwei Linksnebenklassen von H in G sind gleichmächtig.
>  
> Beweis:
>  Für jedes a [mm]\in[/mm] G ist die Abb.: H [mm]\to[/mm] aH, bijektiv.
>  [...]
>  
> Warum ist die Abbildung bijektiv?

Ich sehe noch keine Abbildung ! Du meinst wohl

f:H [mm]\to[/mm] aH, f(h)=a*h

Dass f surjektiv ist, folgt sofort aus der Def. der Nebenklasse aH.

Jetzt nimm mal an, dass für [mm] h_1,h_2 \in [/mm] H gilt: [mm] f(h_1)=f(h_2). [/mm]

Warum folgt [mm] h_1=h_2 [/mm] ?

FRED

>  Kann mir das nicht erklären...


Bezug
                
Bezug
Nebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Di 16.10.2012
Autor: Kimmel


> Jetzt nimm mal an, dass für [mm]h_1,h_2 \in[/mm] H gilt:
> [mm]f(h_1)=f(h_2).[/mm]
>  
> Warum folgt [mm]h_1=h_2[/mm] ?

$ [mm] f(h_1) [/mm] = [mm] f(h_2) [/mm] $
$ => [mm] ah_1 [/mm] = [mm] ah_2 [/mm] $
$ => [mm] h_1 [/mm] = [mm] h_2 [/mm] $

...Habe ich da etwas nicht bedacht?

Bezug
                        
Bezug
Nebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Di 16.10.2012
Autor: schachuzipus

Hallo Kimmel,


> > Jetzt nimm mal an, dass für [mm]h_1,h_2 \in[/mm] H gilt:
> > [mm]f(h_1)=f(h_2).[/mm]
>  >  
> > Warum folgt [mm]h_1=h_2[/mm] ?
>  
> [mm]f(h_1) = f(h_2)[/mm]
>  [mm]=> ah_1 = ah_2[/mm]
>  [mm]=> h_1 = h_2[/mm]

[ok]

> ...Habe ich da etwas nicht bedacht?

Ist ok, aber vllt. schreibst du ne klitzekleine Begr. dran für den letzten Schritt - obwohl offensichtlich ist, was du gemacht hast; aber wenn der Korrektor streng ist  ...

Gruß

schachuzipus


Bezug
                                
Bezug
Nebenklassen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Di 16.10.2012
Autor: Kimmel


> Ist ok, aber vllt. schreibst du ne klitzekleine Begr. dran
> für den letzten Schritt - obwohl offensichtlich ist, was
> du gemacht hast; aber wenn der Korrektor streng ist  ...


[mm]f(h_1) = f(h_2)[/mm]
[mm]=> ah_1 = ah_2[/mm]  / $ [mm] *a^{-1} [/mm] $
[mm]=> h_1 = h_2[/mm]

Verknüpfung mit dem Inversen von a von links.

Ist es das, was du meintest?




Bezug
                                        
Bezug
Nebenklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 Di 16.10.2012
Autor: felixf

Moin,

> > Ist ok, aber vllt. schreibst du ne klitzekleine Begr. dran
> > für den letzten Schritt - obwohl offensichtlich ist, was
> > du gemacht hast; aber wenn der Korrektor streng ist  ...
>  
>
> [mm]f(h_1) = f(h_2)[/mm]
>   [mm]=> ah_1 = ah_2[/mm]  / [mm]*a^{-1}[/mm]
>   [mm]=> h_1 = h_2[/mm]
>  
> Verknüpfung mit dem Inversen von a von links.

[ok]

> Ist es das, was du meintest?

Genau das meinte er.

LG Felix


Bezug
                                                
Bezug
Nebenklassen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Mi 17.10.2012
Autor: Kimmel

Ich bedanke mich bei euch dreien!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]