www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNeutrales element bzgl multipl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Neutrales element bzgl multipl
Neutrales element bzgl multipl < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Neutrales element bzgl multipl: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:33 Fr 19.04.2013
Autor: piriyaie

Aufgabe
Es sei K:={(a, b) [mm] \in \IR^{2} [/mm] | a, b [mm] \in \IQ [/mm] }
Addition: (a, b) + (a', b') :=(a+a', b+b') für alle (a, b), (a', b') [mm] \in [/mm] K
Multiplikation: (a, b)*(a',b') := (aa'+2bb', ab'+ba') für alle (a, b), (a', b') [mm] \in [/mm] K
Zu zeigen: (K, +, *) ist ein Körper

Hinweis: inverses Element bzgl der Multiplikation: [mm] (a*(a^{2}-2b^{2})^{-1}, -b*(a^{2}-2b^{2})^{-1}) [/mm]

Hallo,

ist schon lang her mit den Körpern ;-). Ich möchte nur mal wissen, was das neutrale Element bzgl der Multiplikation ist.

Also zu Zeigen ist:

(a, [mm] b)*e_{*}=(a, [/mm] b)

Dies ist ja genau dann der Fall, wenn:

(a, b)*(?, ??)=(a?+2b??, a??+b?)=(a, b)

Wie kann ich jetzt das inverse element finden? Irgendwie mit äquivalenzumformung... aber wie genau??

[mm] \gdw [/mm] a?+2b??=a
und a??+b?=b

so??? und wie gehts dann weiter???

Danke schonmal.

Grüße
Ali


        
Bezug
Neutrales element bzgl multipl: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Fr 19.04.2013
Autor: Diophant

Hallo Ali,

das ist eine nette Aufgabe, da das inverse Element der Multiplikation als Hinweis gegeben ist. Falls es sich um einen Körper handelt, muss stets gelten

a*a'=e

[a': inverses Element zu a, e: neutrales Element bzgl. der Multiplikation]

Damit kannst du ja e jedenfalls mal ausrechnen.


Gruß, Diophant

Bezug
                
Bezug
Neutrales element bzgl multipl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Fr 19.04.2013
Autor: piriyaie


> Hallo Ali,
>  
> das ist eine nette Aufgabe, da das inverse Element der
> Multiplikation als Hinweis gegeben ist. Falls es sich um
> einen Körper handelt, muss stets gelten
>  
> a*a'=e

Das habe ich schon gemacht. So komme ich auf (1, 0). Dies ist auch das neutrale element bzgl der multiplikation. Mir geht es aber darum, dass ich das ganze auch gern mit einer äquivalenzumformung gemacht hätte. Ist das irgendwie möglich?

Eine professorin von mir hat mal das neutrale element mit äquivalenzumformungen berechnet. Geht das bei dieser aufgabe auch irgendwie??

Also das ich z.b. so anfange:

[mm] \gdw [/mm] a?+2b??=a

oder irgendwie so...
verstehst du was ich mein?

>  
> [a': inverses Element zu a, e: neutrales Element bzgl. der
> Multiplikation]
>  
> Damit kannst du ja e jedenfalls mal ausrechnen.
>  
>
> Gruß, Diophant

danke schonmal.

Grüße
Ali


Bezug
                        
Bezug
Neutrales element bzgl multipl: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Sa 20.04.2013
Autor: leduart

Hallo
schreibe statt Fragezeichen: e=(e1,e2) dann bilde nach den gegebenen Regeln (a,b)*(e1,e2)
dann hast du mit a=ersteKomp, b= 2te Komp. ein lineares GS mit den 2 Unbekannten e1 und e2, das man einfach löst.
gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]