www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikNewton-Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Numerik" - Newton-Verfahren
Newton-Verfahren < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:30 Do 23.10.2014
Autor: capri

Aufgabe
Leiten Sie für $ f(x) = [mm] x^2 [/mm] - [mm] \bruch{\alpha}{x} [/mm] , $ $ x [mm] \in [/mm] [ [mm] \bruch{1}{2},\bruch{3}{2}] [/mm] , $ $ [mm] (\alpha \ne [/mm] 0) $ das Newton-Verfahren zur Berechnung von $ [mm] \sqrt[3]{\alpha} [/mm] $ her. Geben Sie für $ [mm] \alpha [/mm] = 1 $ ein geeignetes Intervall für die Startnäherung $ [mm] x_0 [/mm] $ an.

Guten Morgen,


ich komme leider mit der Aufgabe nicht zurecht.
Als erstes habe ich die Ableitung gemacht.

$ f(x) = [mm] x^2 [/mm] - [mm] \bruch{\alpha}{x} [/mm] $
$ f'(x) = [mm] \bruch{2x+\alpha}{x^2} [/mm] $

ist die Ableitung richtig?

als nächsten Schritt weiß ich schon nicht mehr weiter.

ich weiß nicht, wie man auf $ [mm] \sqrt[3]{\alpha} [/mm] $ kommt.

normalerweise würde ich jetzt die formel hinschreiben, $ f(x) $ und $ f'(x) $ habe ich ja, was würde ich denn alt startwert nehmen?
Mich irritiert das [mm] \alpha [/mm] irgendwie..


LG



        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Do 23.10.2014
Autor: luis52


>  Als erstes habe ich die Ableitung gemacht.
>  
> [mm]f(x) = x^2 - \bruch{\alpha}{x}[/mm]
>  [mm]f'(x) = \bruch{2x+\alpha}{x^2}[/mm]
>  
> ist die Ableitung richtig?

Moin, *ich* erhalte  [mm]f'(x) = \bruch{2x^3+\alpha}{x^2}[/mm].

>  
> als nächsten Schritt weiß ich schon nicht mehr weiter.
>  
> ich weiß nicht, wie man auf [mm]\sqrt[3]{\alpha}[/mm] kommt.

Wie sieht eine oder die Nullstelle der Funktion aus, d.h. [mm] $x_0$ [/mm] mit [mm] $f(x_0)=0$? [/mm]



Bezug
                
Bezug
Newton-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 Do 23.10.2014
Autor: capri

Danke erstmal,

ok die Nullstellen von $ f(x) $ ist ja gerade $ [mm] \sqrt[3]{\alpha} [/mm] $.

Hmm bei Wolfram zeigt der mir meine Ableitung an.. :S

das heißt mein $ [mm] x_0 [/mm] =  [mm] \sqrt[3]{\alpha} [/mm] $.

$ [mm] x_n_+_1 [/mm] $ = $ [mm] \sqrt[3]{\alpha} [/mm] $ - $ [mm] \bruch{f(\sqrt[3]{\alpha})}{f'(\sqrt[3]{\alpha})} [/mm] $

wäre das bis hierhin richtig?

LG





Bezug
                        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 Do 23.10.2014
Autor: fred97


> Danke erstmal,
>  
> ok die Nullstellen von [mm]f(x)[/mm] ist ja gerade [mm]\sqrt[3]{\alpha} [/mm].
>  
> Hmm bei Wolfram zeigt der mir meine Ableitung an.. :S

Das glaube ich nicht. Deine Ableitung ist falsch.


>  
> das heißt mein [mm]x_0 = \sqrt[3]{\alpha} [/mm].

Nein. Du nimmst ja als Startwert die Nullstelle !!!!


>  
> [mm]x_n_+_1[/mm] = [mm]\sqrt[3]{\alpha}[/mm] -
> [mm]\bruch{f(\sqrt[3]{\alpha})}{f'(\sqrt[3]{\alpha})}[/mm]

Völliger Unsinn.

>  
> wäre das bis hierhin richtig?

Nein.

FRED

>  
> LG
>  
>
>
>  


Bezug
                                
Bezug
Newton-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 Do 23.10.2014
Autor: capri

Hallo,

hm..kann mir jmd helfen weiter zu kommen, da es ja falsch ist?

LG

Bezug
                                        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Do 23.10.2014
Autor: Al-Chwarizmi


> hm..kann mir jmd helfen weiter zu kommen, da es ja falsch
> ist?



Hi capri,

also nochmals von vorne. die Aufgabe war:

Aufgabe
Leiten Sie für $ f(x) = [mm] x^2 [/mm] - [mm] \bruch{\alpha}{x} [/mm] , $ $ x [mm] \in [/mm] [ [mm] \bruch{1}{2},\bruch{3}{2}] [/mm] , $ $ [mm] (\alpha \ne [/mm] 0) $ das Newton-Verfahren zur Berechnung von $ [mm] \sqrt[3]{\alpha} [/mm] $ her. Geben Sie für $ [mm] \alpha [/mm] = 1 $ ein geeignetes Intervall für die Startnäherung $ [mm] x_0 [/mm] $ an.



Als erstes habe ich die Ableitung gemacht.

$ f(x) = [mm] x^2 [/mm] - [mm] \bruch{\alpha}{x} [/mm] $
$ f'(x) = [mm] \bruch{2x+\alpha}{x^2} [/mm] $

ist die Ableitung richtig?

Diese Ableitung wäre dann richtig, wenn du sie von Wolfram
auch noch richtig abgeschrieben hättest, nämlich:

   $ f'(x)\ =\ [mm] 2x+\bruch{\alpha}{x^2} [/mm] $


> als nächsten Schritt weiß ich schon nicht mehr weiter.

> ich weiß nicht, wie man auf $ [mm] \sqrt[3]{\alpha} [/mm] $ kommt.

> normalerweise würde ich jetzt die Formel hinschreiben,

$ f(x) $ und $ f'(x) $ habe ich ja, was würde ich denn als Startwert nehmen?

Die Rekursionsformel kannst du auch hinschreiben, wenn
du noch keinen konkreten Startwert hast. Mach das halt
mal - mit dem richtigen Term für die Ableitung !

> Mich irritiert das $ [mm] \alpha [/mm] $ irgendwie..

Naja, das ist die Zahl, für deren Kubikwurzel gerade
ein Näherungsverfahren entwickelt werden soll. Damit
das Verfahren dann für beliebige (positive) Zahlen
anwendbar wird, steht für diese Zahl hier eine
Konstante [mm] \alpha. [/mm]

Für die Anwendung des Verfahrens ist es dann natürlich
nützlich, wenn als Startwert eine Zahl genommen wird,
die schon so ungefähr in der Nähe der gesuchten
Kubikwurzel liegen könnte. Ich glaube aber nicht, dass
dies für den vorliegenden Fall wirklich wichtig ist.

Der in der Aufgabe genannte Fall mit [mm] \alpha=1 [/mm] erscheint mir
aber äußerst witzlos - für diesen Fall braucht man nun
wirklich keinerlei Näherungsverfahren !

LG ,   Al-Chwarizmi





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]