www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisNewton-Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Newton-Verfahren
Newton-Verfahren < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton-Verfahren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:47 Sa 02.04.2005
Autor: dark-sea

Einen schönen guten Morgen!

Ich mache gerade meine Klausuren von den letzten 2 Jahren durch und komme bei einer Aufgabe nicht weiter. Das Lösungsblatt lässt bei mir auch Fragen offen. Es wäre toll, wenn ihr mir helfen könntet!

f(x) = [mm] \bruch{2}{ x^{2} + 1,5} [/mm]

Die Aufgabe dazu:
Die erste Winkelhalbierende schneidet die Kurve in einem Punkt S. Bestimme die Koordinaten von S auf 3 Dezimalen gerundet mit dem Newtonverfahren. Gib die Hilfsfunktion für Newton an, den Startwert und die Eingabe in den GTR.


Mein Ansatz:
Erste Winkelhalbierende: y=x  --> gleichsetzten mit Term:

-->  x = [mm] \bruch{2}{ x^{2} + 1,5} [/mm]

-->  x = x( [mm] x^{2} [/mm] + 1,5) = 2

-->  [mm] x^{3} [/mm] + 1,5x - 2 = 0

-->  g(x)= [mm] x^{3} [/mm] + 1,5x - 2

-->  g'(x)= 3 [mm] x^{2} [/mm] +1,5

g(0)= -2 < 0   und   g(1)= 0,5 > 0   Wieso brauche ich hier den Wert für g(1)?

Der Startwert ist angeblich [mm] x_{0} [/mm] = 0,8   Wie komme ich auf diesen Wert?

Die Eingabe in den GTR ist klar.

Vielen Dank im Voraus!
Gruß, dark-sea


        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Sa 02.04.2005
Autor: mathemaduenn

Guten Morgen,

> f(x) = [mm]\bruch{2}{ x^{2} + 1,5}[/mm]
>
> Die Aufgabe dazu:
>  Die erste Winkelhalbierende schneidet die Kurve in einem
> Punkt S. Bestimme die Koordinaten von S auf 3 Dezimalen
> gerundet mit dem Newtonverfahren. Gib die Hilfsfunktion für
> Newton an, den Startwert und die Eingabe in den GTR.
>  
>
> Mein Ansatz:
>  Erste Winkelhalbierende: y=x  --> gleichsetzten mit Term:

>  
> -->  x = [mm]\bruch{2}{ x^{2} + 1,5}[/mm]

>
> -->  x = x( [mm]x^{2}[/mm] + 1,5) = 2

Das "x=" ist ein kleiner Schönheitsfehler :-)(Ich weiß ja nicht wie penibel euer Mathelehrer ist.)  

> -->  [mm]x^{3}[/mm] + 1,5x - 2 = 0

>  
> -->  g(x)= [mm]x^{3}[/mm] + 1,5x - 2

>
> -->  g'(x)= 3 [mm]x^{2}[/mm] +1,5

>  
> g(0)= -2 < 0   und   g(1)= 0,5 > 0   Wieso brauche ich hier
> den Wert für g(1)?

Die Funktion g ist stetig und das sie für 0 kleiner Null ist und für 1 größer Null heißt irgendwo dazwischen muß eine Nullstelle sein. Der Startwert sollte zumindest aus diesem Intervall mit der potentiellen Nullstelle sein. Es müsste nicht unbedingt 0.8 sein. Wegen g(0,7)<0 und g(0,9)> 0 aber sicher sinnvoll.
viele Grüße
mathemaduenn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]