www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNewton-Verfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Newton-Verfahren
Newton-Verfahren < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton-Verfahren: Schnittpunkte
Status: (Frage) beantwortet Status 
Datum: 18:24 Mo 01.02.2010
Autor: Julia031988

Aufgabe
Berechnen Sie den Schnittpunkt der beiden Funktionen f(x)= [mm] 2^x [/mm] und g(x)=3+ e^-2x mit dem Newton-Verfahren (3 Ilerationsschritte) ausgehend von x0= 3.

Ich hatte das Newton-Verfahren gar nicht in der Schule und eigentlich löst man solche Aufgaben ja auch durch gleichsetzen. Habe mich aber mal etwas umgeschaut und folgendes dazu gefunden:

f(x)-g(x)= 0

[mm] 2^x [/mm] - 3+e^(-2x)

Ab hier weiß ich jetzt nicht so wirklich was man machen soll. Mein Taschenrechner kann dazu wohl irgendwie auch nix und da ich morgen eine Prüfung schreibe, in die wir Unterlagen mitnehmen dürfen, würde ich mir gerne ne Beispielaufgabe wie diese, mit Weg notieren. An einem praktischen Beispiel verstehe ich Sachen leichter. Dieses theoretische Mathe verstehe ich leider immer gar nicht. Weswegen mir die Mathevorlesungen in der Uni auch wirklich nix gebracht haben. Ich hoffe ihr könnt mir helfen so eine Anleitung für dieses Verfahren zu erstellen.


        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Mo 01.02.2010
Autor: MathePower

Hallo Julia031988,


> Berechnen Sie den Schnittpunkt der beiden Funktionen f(x)=
> [mm]2^x[/mm] und g(x)=3+ e^-2x mit dem Newton-Verfahren (3
> Ilerationsschritte) ausgehend von x0= 3.
>  Ich hatte das Newton-Verfahren gar nicht in der Schule und
> eigentlich löst man solche Aufgaben ja auch durch
> gleichsetzen. Habe mich aber mal etwas umgeschaut und
> folgendes dazu gefunden:
>  
> f(x)-g(x)= 0
>  
> [mm]2^x[/mm] - 3+e^(-2x)
>  
> Ab hier weiß ich jetzt nicht so wirklich was man machen
> soll. Mein Taschenrechner kann dazu wohl irgendwie auch nix
> und da ich morgen eine Prüfung schreibe, in die wir
> Unterlagen mitnehmen dürfen, würde ich mir gerne ne
> Beispielaufgabe wie diese, mit Weg notieren. An einem
> praktischen Beispiel verstehe ich Sachen leichter. Dieses
> theoretische Mathe verstehe ich leider immer gar nicht.
> Weswegen mir die Mathevorlesungen in der Uni auch wirklich
> nix gebracht haben. Ich hoffe ihr könnt mir helfen so eine
> Anleitung für dieses Verfahren zu erstellen.

>



Das Newtonverfahren basiert darauf, das man
die Tangente an der Stelle des Näherungswertes bildet,
und dessen Schnittpunkt mit der x-Achse bestimmt wird.

Bsp.

Gesucht ist eine Lösung der Gleichung [mm]h\left(x\right)=0[/mm]
wobei [mm]x_{0}[/mm] der Startwert ist.

Zunächst wird die Tangente gebildet: [mm]y=h'\left(x_{0}\right)*\left(x-x_{0}\right)+h\left(x_{0}\right)[/mm]

Diese Tangente wird nun zum Schnitt mit der x-Achse gebracht:

[mm]0=h'\left(x_{0}\right)*\left(x-x_{0}\right)+h\left(x_{0}\right)[/mm]

Das ergibt den neuen Schnittpunkt [mm]x_{1}[/mm]

[mm]x_{1}=x_{0}-\bruch{h\left(x_{0}\right)}{h'\left(x_{0}\right)}[/mm]

Dies ist auch gleichzeitig der neue Näherungswert für die Lösung.


Gruss
MathePower

Bezug
                
Bezug
Newton-Verfahren: Lösung
Status: (Frage) beantwortet Status 
Datum: 18:59 Mo 01.02.2010
Autor: Julia031988

3- [mm] \bruch{2^x -3+e^(-2x)}{In(2)*2^x-2*e^(-2x)} [/mm]

Das wäre dann doch sozusagen die Umsetzung der Formel für diiese Aufgabe oder?
Und jetzt  einfach ausrechnen?

Bezug
                        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Mo 01.02.2010
Autor: MathePower

Hallo Julia031988,

> 3- [mm]\bruch{2^x -3+e^(-2x)}{In(2)*2^x-2*e^(-2x)}[/mm]
>  
> Das wäre dann doch sozusagen die Umsetzung der Formel für
> diese Aufgabe oder?


So wie das jetzt das steht, gilt das nur für den ersten Iterationschritt.

Besser ist:

[mm]\blue{x}-\bruch{2^x -3+e^{-2x}}{\ln(2)*2^x-2*e^{-2x}}[/mm]


>  Und jetzt  einfach ausrechnen?


Ja.


Gruss
MathePower

Bezug
                                
Bezug
Newton-Verfahren: rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:15 Mo 01.02.2010
Autor: Julia031988

Aufgabe
siehe anfang der frage

hmm also wenn ich 3 nicht für x einsetzen soll, soll ich dann einfach mit x das erstmal ausrechnen. mir ist jetzt nicht ganz klar wie das weiter ablaufen soll.
Also wenn ich das so normal ausrechne gubt mir der Taschenrechner folgendes:
[mm] \bruch{3*In(2)*e^(-2x)-In(2)-2}{In(2)*(In(2)*e^((In(2)+2)*x)-2}+x-\bruch{1}{In(2)} [/mm]

Bezug
                                        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Mo 01.02.2010
Autor: MathePower

Hallo Julia031988,

> siehe anfang der frage
>  hmm also wenn ich 3 nicht für x einsetzen soll, soll ich
> dann einfach mit x das erstmal ausrechnen. mir ist jetzt
> nicht ganz klar wie das weiter ablaufen soll.


Weshalb ich die 3 durch ein x ersetzt habe, hat den Grund,
daß Du dann die Formel immer wieder verwenden kannst.


>  Also wenn ich das so normal ausrechne gubt mir der
> Taschenrechner folgendes:
> [mm]\bruch{3*In(2)*e^(-2x)-In(2)-2}{In(2)*(In(2)*e^((In(2)+2)*x)-2}+x-\bruch{1}{In(2)}[/mm]

>


Habe ich jetzt net nachgerechnet.


Gruss
MathePower  

Bezug
                                                
Bezug
Newton-Verfahren: rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:52 Mo 01.02.2010
Autor: Julia031988

Aufgabe
siehe anfang der frage

ja aber ich verstehe jetzt nicht,was ich weiter mit diesr formel machen soll. also soll ich jetzt immer andere x-werte einsetzen und wenn ja wie lange oder worauf soll ich da jetzt achten. ich habe sowas noch nie gemacht...

Bezug
                                                        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mo 01.02.2010
Autor: MathePower

Hallo Julia031988,

> siehe anfang der frage
>  ja aber ich verstehe jetzt nicht,was ich weiter mit diesr
> formel machen soll. also soll ich jetzt immer andere
> x-werte einsetzen und wenn ja wie lange oder worauf soll
> ich da jetzt achten. ich habe sowas noch nie gemacht...


Setze zuerst x=3 ein, dann erhältst Du
gemäß der Formel einen neuen x-Wert,  [mm]x_{1}[/mm].

Diesen neuen x-Wert setzt Du wieder in die Formel ein.
und erhältst wiederum einen anderen x-Wert.

Das geht so weiter, bis Du 3 Iterationschritte gemacht hast.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]