www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikNicht ganzzahlige Faktoren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Kombinatorik" - Nicht ganzzahlige Faktoren
Nicht ganzzahlige Faktoren < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nicht ganzzahlige Faktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Mo 13.02.2006
Autor: lu79

Aufgabe
Hallo zusammen, ich schreibe gerade meine Diplomarbeit, welche sich mit dem Thema Zeitwirtschaft und Ergonomie befasst. In der Praxis werden Arbeitsabläufe mit Hilfe von Prozessbausteinen beschrieben. So ein Baustein kann z.B. "Schraube eindrehen" sein. Müssen jedoch 3 Schrauben (Anzahl) in jedem Takt (Häufigkeit) angebracht werden, so wird der Baustein mit dem Faktor 3 * 1 versehen.
Prozessbausteine können aber auch nicht ganzzahlige Faktoren besitzen. So sagt der Faktor 6/5 bzw. 6 * 1/5 aus, dass der Werker 6 Schrauben in 5 Takten anbringen muss. Damit ist jedoch noch nicht ausgesagt, wie der Baustein auf die 5 Takte verteilt ist. Der Werker kann z.B. den Baustein 6-mal in Takt 5 ausführen oder jeweils 3-mal in Takt 1 und 2 oder...

Wieviele Möglichkeiten gibt es bei einem Faktor 6/5?
Allgemein kann der Faktor (k) so beschrieben werden,
k = n * 1/x
wobei "n" für die Anzahl der Ausführungen und "x" für die Anzahl der Takte steht. Kann jemand von euch hierfür ne allgemeingültige Formel finden, wie man die Anzahl der Möglichkeiten berechnet?
Letztlich ist dieses oben beschriebene Problem ja nichts anderes, als 6 Äpfel auf 5 Körbe zu verteilen..
Wäre schön, wenn mir jemand weiterhelfen könnte. Vielen Dank!!



        
Bezug
Nicht ganzzahlige Faktoren: allgemeine Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 14:08 Mo 13.02.2006
Autor: Hugo_Sanchez-Vicario

Hallo lu79,

bei Problemen dieser Art kannst du so vorgehen. Im Beispiel 6/5 sollst du sechs Arbeitsschritte auf fünf Arbeitstakte verteilen. Du kannst die verschiedenen Möglichkeiten aufschreiben, indem du zur Kennzeichnung der Takte Kommata einfügst, z.B.
T,,TT,T,TT

Damit kann man ausdrücken, dass
im ersten Takt ein Schritt,
im zweiten Takt kein Schritt,
im dritten Takt zwei Schritte,
im vierten Takt ein Schritt und
im fünften Takt zwei Schritte ausgeführt wurden.

Das sind sechs Schritte in fünf Takten.

Man braucht zur Trennung der fünf Takte vier Kommata, so dass jede Zeichenkette aus 6+4=10 Zeichen besteht. Offensichtlich stellt jede Zeichenkette eine bestimmte Möglichkeit dar, wie man die Arbeit auf die Takte verteilen kann.

Die Zahl, nach der du suchst ist demnach die Anzahl der verschiedenen Reihenfolgen, in denen man sechs Ts und vier Kommata hintereinander schreiben kann.

Für zehn verschiedene Zeichen erhielte man 10!=3628800 Möglichkeiten. Man kann jedoch die Ts und die Kommata nicht voneinander unterscheiden, so dass man noch durch 6! und 4! teilen muss. Es sind also insgesamt [mm] $\pmat{10\\6}=210$ [/mm] Möglichkeiten.

Allgemein bedeutet das für einen m/n Arbeitsschritt, dass die Anzahl der Möglichkeiten... kommst du auf eine allgemeine Formel?

Hugo

Bezug
                
Bezug
Nicht ganzzahlige Faktoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mo 13.02.2006
Autor: lu79

Danke erstmal für deine Hilfe. Handelt sich dann also um Kombinationen C(x;n) mit Wiederholung, wobei x für die Anzahl der Takte und n für die Anzahl der auf die Takte zu verteilenden Bausteine steht. Es handelt sich um gleiche Bausteine, aber verschiedene Takte. Wiederholung deshalb, weil in einem Takt mehrere gleichartige Bausteine vorkommen können, ja? Damit dürfte die allgemeine Formel lauten:

[mm] \vektor{x+n-1 \\ n} [/mm]

Stimmt das?

Noch eine Frage: Worin unterscheiden sich Permutationen und Variationen von Kombinationen? Kann man dies eventl. für mein Beispiel erklären.


Bezug
                        
Bezug
Nicht ganzzahlige Faktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Mo 13.02.2006
Autor: Hugo_Sanchez-Vicario

Hallo lu79,

deine Formel ist richtig.

Die Frage zu den Kombinationen, Variationen und Permutationen kann ich dir nicht aus dem Stand beantworten. Vielleicht suchst du mal im Netz nach diesen drei Begriffen.

Der Artikel über []Kombinatorik bei Wikipedia dürfte auch ein bisschen Licht ins Dunkel bringen.

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]