www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenNichtlineares Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Nichtlineare Gleichungen" - Nichtlineares Gleichungssystem
Nichtlineares Gleichungssystem < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nichtlineares Gleichungssystem: Tipp
Status: (Frage) überfällig Status 
Datum: 20:56 Di 16.06.2015
Autor: Johannes5

Hallo!

Ich hoffe, dass ich für meinen Eintrag den richtigen Ort gefunden habe.

Im Zuge meiner Masterarbeit bin ich ein paar Systemen von nichtlinearen Gleichungen begegnet.
In diesem Zusammenhang sind für mich folgende Punkte relevant:

1.)
Die Frage nach der Existenz einer eindeutigen Lösung.
Bzw. da das ja immer von der spezifischen Art der Gleichungen abhängt: Gibt es geeignete Verfahren, um ein konkretes nichtlineares Gleichungssystem daraufhin zu untersuchen, wie viele Lösungen es gibt (bzw. ob es nur eine einzige geben kann)?

2.)
a) Ist es u.U. möglich eine Aussage darüber zu treffen, ob es eine eindeutige Lösung gibt, wenn der Definitionsbereich der Lösungsvariablen eingeschränkt wird?
b) Und in diesem Zusammenhang: Welche (gebräuchlichen) Vorgehensweisen gibt es, um bei numerischen Lösungsverfahren Bedingungen an die Lösungsvariablen zu stellen?

Leider ist mein mathematisches Wissen (und Verständnis) zu diesem Themengebiet rudimentär.
Ich wäre daher insbesondere auch für Hinweise zu Literatur, die diese Fragestellungen behandelt, sehr dankbar. "Einstiegsliteratur", sofern vorhanden, wäre dabei natürlich besonders gerne gesehen...;-)

So, ich hoffe, dass meine Fragen nicht zu wirr sind und ihr mit ihnen überhaupt irgendetwas anfangen könnt.
Für alle Fälle versuche ich meine Probleme noch einmal an einem konkreten Beispiel zu veranschaulichen:

Gegeben sei ein Gleichungssystem mit n Gleichungen (und n Lösungsvariablen) folgender Gestalt:

[mm] \fedonFi(x)=1/a_1*(1/a_2(b_1i-(a_3-exp(-a_4(a_5-sum(x_i,i=1,n)))))*(b_2i-x_i)-b_3i)-x_i=0 [/mm]
[mm] \fedoff [/mm]


Wobei [mm] \fedon [/mm] i=1,..,n [mm] \fedoff [/mm]
und  [mm] \fedon [/mm] a1,...,a5 = [mm] const\fedoff [/mm]  sowie [mm] \fedon [/mm] b1i,...,b3i = const.
[mm] \fedoff [/mm]

Für mich wäre es jetzt genial zu wissen, ob es Möglichkeiten gibt, (in Abhängigkeit der Konstanten) Aussagen darüber zu treffen, ob und, falls ja, wie viele Lösungen das Gleichungssystem hat.
Ferner würde ich die Lösungen gerne auf positive [mm] \fedon [/mm] x [mm] \fedoff [/mm] beschränken und dazu noch für jedes [mm] \fedon x_i\fedoff [/mm] eine individuelle obere Grenze des Definitionsbereich festlegen.


Für Hinweise (wie gesagt gerne auch geeignete Literatur!), wie ich einem derartigen Problem begegnen könnte, wäre ich sehr dankbar!

Vielen Dank schon einmal im Voraus!!

Johannes


P.S: Als Hinweis zum Cross-Posting: Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheplanet.com/default3.html?call=viewtopic.php?topic=125646&ref=http%3A%2F%2Fwww.google.fr%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D12%26cad%3Drja%26uact%3D8%26ved%3D0CCgQFjABOApqFQoTCJyGkJ3lj8YCFSaC2wodU3cA6w

        
Bezug
Nichtlineares Gleichungssystem: Problem umgangen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:53 Fr 19.06.2015
Autor: Johannes5

Hallo noch einmal!
Also, zwar habe ich das Problem noch nicht wirklich gelöst, aber ich habe es, so denke ich, erfolgreich umgangen.
In diesem Sinne bin ich natürlich nach wie vor an einer Beantwortung interessiert, allerdings ist sie für meine Masterarbeit (voraussichtlich) nicht mehr relevant, so dass es in jedem Fall nicht mehr dringend ist.
Vielen Dank in jedem Fall!
Johannes

Bezug
        
Bezug
Nichtlineares Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Fr 19.06.2015
Autor: M.Rex

Hallo Johannes.

Deine Gleichungen sind - fürchte ich - nicht analytisch nach [mm] x_{i} [/mm] umstellbar, daher fällt ein Einsetzungsverfahren weg.

Ist folgendes gegeben?

[mm]F_{i}(x)=\frac{1}{a_1}\cdot{}\left(\frac{1}{a_2}\left(b_1i-\left(a_3-exp\left(-a_4\left(a_5-\sum\limits_{i=1}^{n}(x_i)\right)\right)\right)\right)\right)\cdot{}\left(b_2i-x_i\right)-b_3i\right)-x_i[/mm]

Was du versuchen könntest, ist eine Gleichungsdivision, nachdem du das alleinstehende [mm] x_{i} [/mm] auf die andere Seite gebracht hast, aber das habe ich nicht durchprobiert.

Alternativ bleibt ein numerisches Lösungsverfahren, wenn die Parameter bekannt sind.

Oder hast du evtl sogar eine rekursive Darstellung der [mm] F_{i}(x) [/mm] mit der du dann weiterrechnen kannst? Das ist in seltenen Fällen sogar einfacher, als mit der expliziten Darstellung zu rechnen.

Viel mehr Möglichkeiten sehe ich da gerade nicht.

Marius

Bezug
        
Bezug
Nichtlineares Gleichungssystem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mi 01.07.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]