www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenNiveaufläche
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Niveaufläche
Niveaufläche < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Niveaufläche: Gradient
Status: (Frage) beantwortet Status 
Datum: 17:38 Fr 17.06.2011
Autor: Dante19

Aufgabe
Gegeben Sei die Funktion [mm] f(x1,x2,x3)=((x1)(x2)^2(x3)^2)sinx1 [/mm]
a)Geben Sie die Gleichung der durch den Punkt [mm] xo=[\bruch{\pi}{2},2,1]^T [/mm] gehenden Niveaufläche von f an.
b)Berechnen Sie grad [mm] f(\underline{x}) [/mm]
c) Ermitteln Sie die Gleichung der Tangentialebene E an die durch den Punkt [mm] \underline{xo} [/mm] = [mm] [\bruch{\pi}{2},2,1]^T [/mm] gehende Niveaufläche von f.


Bei a fehlt mir der Ansatz ich weiß gar nicht wie ich vorgehen soll, vllt. kann mir jeman da weiterhelfen.
B habe ich schon gelöst

        
Bezug
Niveaufläche: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Fr 17.06.2011
Autor: Diophant

Hallo,

das sollte kein Problem sein: der Funktionswert im Punkt [mm] x_0 [/mm] (deine Bezeichnungen sind verwirrend, sind die so vorgegeben?) ist recht einfach zu bestimmen, und der Funktionsterm mit diesem Wert gleichgesetzt lässt sich ja unschwer bspw. nach [mm] x_3 [/mm] auflösen. Das müsste es dann IMO schon gewesen sein.

Gruß, Diophant

Bezug
                
Bezug
Niveaufläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Fr 17.06.2011
Autor: Dante19

Ja die Beziehungen sind so vorgegeben.
Also wenn ich dich richtig verstanden habe muss ich [mm] (\bruch{\pi}{2},2,1)=(x1,(x2)^2,(x3)^2)sinx1 [/mm] und dan nach x3 auflösen oder ??

Bezug
                        
Bezug
Niveaufläche: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Fr 17.06.2011
Autor: Diophant

Hallo,

oben war die Funktion aber noch vom Typ

[mm]f: \IR^3 \mapsto \IR[/mm]

Und sonst würde das mit der Niveaufläche für mich auch keinen Sinn ergeben. D.h. konkret: [mm] f(x_0) [/mm] muss eine reelle Zahl sein und kein Vektor!

Gruß, Diophant

Bezug
                                
Bezug
Niveaufläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Fr 17.06.2011
Autor: Dante19

d.h. ich muss xo nur in f(x1,x2,x3) einsetzen um die Niveaufläche rauszubekommen???

Bezug
                                        
Bezug
Niveaufläche: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Fr 17.06.2011
Autor: leduart

Hallo
ja [mm] f(x_1,x_2,x_3)=f(\vec{x_0}) [/mm] ist deine Niveaufläche.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]