www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenNochmals Fkt. als Potr.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Nochmals Fkt. als Potr.
Nochmals Fkt. als Potr. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nochmals Fkt. als Potr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Di 28.04.2009
Autor: ganzir

Aufgabe
f(x) = ln(3-x)

Diese Funktion soll nun also als Potenzreihe dargestellt werden, zur Lösung dieser Aufgabe habe ich folgenden Hinweis erhalten:

ln(3-x) = ln [mm] [3(1-\bruch{x}{3})] [/mm] = ln3 + ln [mm] (1+(-\bruch{x}{3})) [/mm]

Leider weiß ich gar nicht was ich damit Anfangen soll, wäre wenn mir jemand eine Starthilfe geben könnte

Greetz
Ganzir

        
Bezug
Nochmals Fkt. als Potr.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Di 28.04.2009
Autor: angela.h.b.


> f(x) = ln(3-x)
>  Diese Funktion soll nun also als Potenzreihe dargestellt
> werden, zur Lösung dieser Aufgabe habe ich folgenden
> Hinweis erhalten:
>  
> ln(3-x) = ln [mm][3(1-\bruch{x}{3})][/mm] = ln3 + ln
> [mm](1+(-\bruch{x}{3}))[/mm]
>  
> Leider weiß ich gar nicht was ich damit Anfangen soll, wäre
> wenn mir jemand eine Starthilfe geben könnte

Hallo,

habt ihr möglicherweise schon ln(1+x) als Potenzreihe geschrieben?

Gruß v. Angela

Bezug
                
Bezug
Nochmals Fkt. als Potr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Di 28.04.2009
Autor: ganzir

Aufgabe
habt ihr möglicherweise schon ln(1+x) als Potenzreihe geschrieben?  

Soweit ich das in meinen Unterlagen nachvollziehen kann nein.

Ich habe mir das Ding aber mal auf Wikipedia angesehen:

ln(1-x) = [mm] \summe_{k=1}^{\infty} (-1)^{k+1} \bruch{x^{k}}{k} [/mm] = x - [mm] \bruch{x^{2}}{2} [/mm] + [mm] \bruch{x^{3}}{3} [/mm] - [mm] \bruch{x^{4}}{4} [/mm] + [mm] \ldots [/mm]

Das sieht irgendwie dem ähnlich was ich hier habe.

Bedeutet dies, dass ich überall wo oben x steht nun [mm] -\bruch{x}{3} [/mm] hinschreiben kann und wenn ja, was passiert mit den noch übrigen ln3?

Bezug
                        
Bezug
Nochmals Fkt. als Potr.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Di 28.04.2009
Autor: elvis-13.09

Hallo

Ja das ist in der Tat sehr ähnlich.

Allerdings solltest du nur Dinge verwenden, die du auch benutzen darfst.

Schau nochmal in deine Unterlagen, der Hinweis lässt sehr stark darauf schließen dass du die Reihe von ln(x+1) kennst.
Andernfalls habe ich folgenden Tipp: Stammfunktion+Geometrische Reihe.

Grüße Elvis

Bezug
                                
Bezug
Nochmals Fkt. als Potr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Di 28.04.2009
Autor: ganzir

Aufgabe
Allerdings solltest du nur Dinge verwenden, die du auch benutzen darfst.  

Es wurde nie gesagt, dass wir irgendetwas nicht verwenden dürfen blos weil es noch nicht dran kam ... richtig ist richtig.

Greetz
Ganzir

Bezug
                                        
Bezug
Nochmals Fkt. als Potr.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 Di 28.04.2009
Autor: elvis-13.09

Hallo

> Es wurde nie gesagt, dass wir irgendetwas nicht verwenden
> dürfen blos weil es noch nicht dran kam ... richtig ist
> richtig.

Naja. Das ist mutig. :-)
Viel Glück.

Gruß Elvis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]