www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenNorm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Norm
Norm < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 So 15.12.2013
Autor: Petrit

Aufgabe
Als Norm bezeichnet man ein Funktion [mm] \IR^{2}\to\IR [/mm] mit folgenden Eigenschaften für alle [mm] x\in\IR^{2} [/mm] und [mm] c\in\IR.: [/mm]
1. [mm] N(x)\ge [/mm] 0 und N(x) = 0 genau dann, wenn x = (0,0)
2. N(c*x) = |c|*N(x), wobei || der Betrag ist und für x:= [mm] (x_{1},x_{2}) [/mm] gilt c*x:= [mm] (cx_{1},cx_{2}) [/mm]
3. N(x+y) [mm] \le [/mm] N(x) + N(y)
Zu zeigen: [mm] N_{\infty}:\IR^{2}\to\IR, (x1,x2)\to max\{|x_{1}|,|x_{2}|\} [/mm] und [mm] N_{1}: \IR^{2}\to\IR, (x_{1},x_{2})\to |x_{1}| [/mm] + [mm] |x_{2}| [/mm] sind Normen.

Hallo erstmal!
Ich habe mal wieder ein Problem mit dieser Aufgabe.
Wie kann ich hier zeigen, dass es sich um eine Norm handelt. Muss ich dazu etwa die 3 obigen Bedingungen zeigen und wenn ja, wie? Oder muss ich das irgednwie ganz anders machen. Auf jeden Fall fällt mir kein Ansatz ein und bin mal wieder auf eure Hilfe angewiesen.
Ich hoffe, mir kann weitergeholfen werden!

Ich bedanke mich schonmal für die Mühen und viele Grüße von mir, Petrit!

        
Bezug
Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 So 15.12.2013
Autor: fred97


> Als Norm bezeichnet man ein Funktion [mm]\IR^{2}\to\IR[/mm] mit
> folgenden Eigenschaften für alle [mm]x\in\IR^{2}[/mm] und
> [mm]c\in\IR.:[/mm]
>  1. [mm]N(x)\ge[/mm] 0 und N(x) = 0 genau dann, wenn x = (0,0)
>  2. N(c*x) = |c|*N(x), wobei || der Betrag ist und für x:=
> [mm](x_{1},x_{2})[/mm] gilt c*x:= [mm](cx_{1},cx_{2})[/mm]
>  3. N(x+y) [mm]\le[/mm] N(x) + N(y)
>  Zu zeigen: [mm]N_{\infty}:\IR^{2}\to\IR, (x1,x2)\to max\{|x_{1}|,|x_{2}|\}[/mm]
> und [mm]N_{1}: \IR^{2}\to\IR, (x_{1},x_{2})\to |x_{1}|[/mm] +
> [mm]|x_{2}|[/mm] sind Normen.
>  Hallo erstmal!
>  Ich habe mal wieder ein Problem mit dieser Aufgabe.
>  Wie kann ich hier zeigen, dass es sich um eine Norm
> handelt. Muss ich dazu etwa die 3 obigen Bedingungen zeigen


Ja


> und wenn ja, wie?

Nachrechnen !!!!

FRED


> Oder muss ich das irgednwie ganz anders
> machen. Auf jeden Fall fällt mir kein Ansatz ein und bin
> mal wieder auf eure Hilfe angewiesen.
>  Ich hoffe, mir kann weitergeholfen werden!
>  
> Ich bedanke mich schonmal für die Mühen und viele Grüße
> von mir, Petrit!


Bezug
                
Bezug
Norm: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:23 Mo 16.12.2013
Autor: Petrit

Hallo.
Ich weiß jetzt zwar was ich machen muss, allerdings weiß ich gerade nicht, wie ich das aufschreiben könnte. Ich weiß, dass ich die 3 Bedinungen untersuchen muss. Die erste ist klar. Bei der zweiten soll das ja soviel heißen, dass wenn ich ein |c*x| = |c|*|x| sein soll und beim dritten muss das ungefähr so aussehen |x1+x2| [mm] \le [/mm] |x1| + |x2| sein. Muss ich dafür jetzt noch alle Fälle unterscheiden, d.h. x1<x2 und x1 [mm] \ge [/mm] x2?
Könnte mir da vielleicht jemand weiterhelfen, wäre echt super. Stehe gerade sowas von voll auf'm Schlauch.

Schonmal danke und viele Grüße, Petrit!

Bezug
                        
Bezug
Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Mo 16.12.2013
Autor: fred97

Ich zeigs Dir mal für die Norm [mm] N_1 [/mm] (an [mm] N_{\infty} [/mm] versuchst Du Dich dann mal selbst)

Seien [mm] x=(x_1,x_2),y=(y_1,y_2) \in \IR^2 [/mm] und c [mm] \in \IR. [/mm]

[mm] N_1(c*x)=|c*x_1|+|c*x_2|=|c|*|x_1|+|c|*|x_2|=|c|(|x_1|+|x_2|)=|c|*N_1(x). [/mm]

[mm] N_1(x+y)=|x_1+y_1|+|x_2+y_2| \le |x_1|+|y_1|+|x_2|+|y_2|=|x_1|+|x_2|+|y_1|+|y_2|=N_1(x)+N_1(y) [/mm]

FRED

Bezug
                                
Bezug
Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 Mo 16.12.2013
Autor: Petrit

Super, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]