www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Norm auf dem Rn ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Norm auf dem Rn ungleichung
Norm auf dem Rn ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Norm auf dem Rn ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Mi 15.11.2006
Autor: fussel1000

Aufgabe
Es sei ||.|| eine beliebige Norm auf dem [mm] \IR^{n}. [/mm] Zeigen Sie:
a.) [mm] \vmat{ ||x|| - ||y|| } \le [/mm] ||x-y|| für alle x,y [mm] \in \IR^{n}. [/mm]
b.) ||x+y|| + ||x-y|| [mm] \ge [/mm] ||x||+||y|| für alle x,y [mm] \in \IR^{n}. [/mm]  

bei c.) kenn ich nur die Dreicksungelichung b ei Normen, also
||x+y|| [mm] \le [/mm] ||x||+ ||y|| , aber da ist ja das ungleichheitszeichen genau falsch rum. dann habe ich probiert das so zu rechnen:
||x-y||= ||-y+x||, also ||x+y||+||x-y||= ||x+y||+||-y+x|| [mm] \ge [/mm] ||x+y-y+x|| = ||2x|| bringt mich also auch nicht wirklich weiter.
Könnte mir zu dieser Aufgabe vielleicht jemand einen HInweis geben?


        
Bezug
Norm auf dem Rn ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Mi 15.11.2006
Autor: ullim


> Es sei ||.|| eine beliebige Norm auf dem [mm]\IR^{n}.[/mm] Zeigen
> Sie:
> a.) [mm]\vmat{ ||x|| - ||y|| } \le[/mm] ||x-y|| für alle x,y [mm]\in \IR^{n}.[/mm]

Hier kann man wie folgt argumentieren

[mm] |x|=|x-y+y|\le|x-y|+|y| [/mm] also

[mm] |x|-|y|\le|x-y|, [/mm] das Gleiche gilt auch wenn man x und y vertauscht und daraus die Behauptung

> b.) ||x+y|| + ||x-y|| [mm]\ge[/mm] ||x||+||y|| für alle x,y [mm]\in \IR^{n}.[/mm]

Wegen [mm] |x+y|^2+|x-y|^2=2|x|^2+2|y|^2 [/mm] und daraus folgt die Behauptung

> bei c.) kenn ich nur die Dreicksungelichung b ei Normen,
> also
> ||x+y|| [mm]\le[/mm] ||x||+ ||y|| , aber da ist ja das
> ungleichheitszeichen genau falsch rum. dann habe ich
> probiert das so zu rechnen:
> ||x-y||= ||-y+x||, also ||x+y||+||x-y||= ||x+y||+||-y+x||
> [mm]\ge[/mm] ||x+y-y+x|| = ||2x|| bringt mich also auch nicht
> wirklich weiter.
> Könnte mir zu dieser Aufgabe vielleicht jemand einen
> HInweis geben?
>  

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]