Normale Körpererweiterung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:36 Mi 02.01.2008 | Autor: | Anne1986 |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Ich habe eine Frage zu normalen Körpererweiterungen.
[mm] \wurzel{2} [/mm] + [mm] \wurzel{3} [/mm] hat über [mm] \IQ [/mm] das Minimalpolynom [mm] x^4 [/mm] - 10x² + 1.
Die Frage ist, ob [mm] \IQ(\wurzel{2} [/mm] + [mm] \wurzel{3})/\IQ [/mm] normal ist.
Reicht es, wenn man zeigt, dass dieses Minimalpolynom über [mm] \IQ(\wurzel{2} [/mm] + [mm] \wurzel{3}) [/mm] in Linearfaktoren zerfällt? Mal ganz abgesehen davon, ob das stimmt oder nicht.. reicht es ganz allgemein, wenn man das für ein Minimalpolynom zeigt?
Ich blick da im Moment nicht ganz durch. Wenn dieser Ansatz nicht geht, welcher Ansatz ist dann für diese Aufgabe am schlauesten?
Vielen Dank für Antworten!!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:34 Do 03.01.2008 | Autor: | felixf |
Hallo
> Ich habe eine Frage zu normalen Körpererweiterungen.
> [mm]\wurzel{2}[/mm] + [mm]\wurzel{3}[/mm] hat über [mm]\IQ[/mm] das Minimalpolynom
> [mm]x^4[/mm] - 10x² + 1.
> Die Frage ist, ob [mm]\IQ(\wurzel{2}[/mm] + [mm]\wurzel{3})/\IQ[/mm] normal
> ist.
> Reicht es, wenn man zeigt, dass dieses Minimalpolynom über
> [mm]\IQ(\wurzel{2}[/mm] + [mm]\wurzel{3})[/mm] in Linearfaktoren zerfällt?
Ja, das reicht!
> Mal ganz abgesehen davon, ob das stimmt oder nicht.. reicht
> es ganz allgemein, wenn man das für ein Minimalpolynom
> zeigt?
Ja. Dann ist die Koerpererweiterung naemlich ein Zerfaellungskoerper (naemlich der des Minimalpolynoms) und somit normal.
> Ich blick da im Moment nicht ganz durch. Wenn dieser
> Ansatz nicht geht, welcher Ansatz ist dann für diese
> Aufgabe am schlauesten?
Wenn du das Polynom nicht in Linearfaktoren zerlegen willst, kannst du auch so vorgehen: es ist ja [mm] $\IQ(\sqrt{2} [/mm] + [mm] \sqrt{2}) [/mm] = [mm] \IQ(\sqrt{2}, \sqrt{3})$ [/mm] (da beide Grad 4 ueber [mm] $\IQ$ [/mm] haben und der Linke offensichtlich im Rechten enthalten ist). Und der zweite ist offensichtlich der Zerfaellungskoerper vom Polynom [mm] $(x^2 [/mm] - 2) [mm] (x^2 [/mm] - 3)$ (da sieht man sofort alle Nullstellen und braucht nicht zu rechnen), womit er normal ueber [mm] $\IQ$ [/mm] ist.
Bei dieser und aehnlichen Aufgaben kommt man mit diesen Ansatz schnell zum Ziel; wenn man sowas nicht schnell sieht bzw. sehen kann (je nach Aufgabe), dann muss man halt in den sauren Apfel beissen und das Minimalpolynom faktorisieren.
(Mit dem Wissen, dass [mm] $\IQ(\sqrt{2} [/mm] + [mm] \sqrt{3}) [/mm] = [mm] \IQ(\sqrt{2}, \sqrt{3})$ [/mm] ist und dies eine Galois-Erweiterung von [mm] $\IQ$ [/mm] ist, kann man auch die restlichen Nullstellen vom Minimalpolynom von [mm] $\sqrt{2} [/mm] + [mm] \sqrt{3}$ [/mm] raten und muss das dann nur noch zur Verifikation zusammenmultiplizieren: naemlich [mm] $\sqrt{2} [/mm] - [mm] \sqrt{3}$, $-\sqrt{2} [/mm] + [mm] \sqrt{3}$ [/mm] und [mm] $-\sqrt{2} [/mm] - [mm] \sqrt{3}$.)
[/mm]
LG Felix
|
|
|
|