www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenNormalenform zu Parameterform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Normalenform zu Parameterform
Normalenform zu Parameterform < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalenform zu Parameterform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:38 Mi 03.04.2013
Autor: Morbz

Aufgabe
Der Richtungsvektor der Geraden durch O(0/0/0) und P(1/1/1) ist der Normalenvektor der Ebene E. Der Punkt Q(2/1/3) liegt in der Ebene E. Bestimmen Sie eine Paramtergleichung der Ebene.


Hallo,
ich bin gerade bei der Abiturvorbereitung und habe leider ein kleines Problem mit der oberen Aufgabe.

Mein Lösungsansatz:
[mm] g:\overrightarrow{x}= \overrightarrow{OO} [/mm] + r* [mm] \overrightarrow{OP} [/mm]

=> [mm] g:\overrightarrow{x}= \vektor{0 \\ 0 \\ 0} [/mm] + r* [mm] \vektor{-1 \\ -1 \\ -1} [/mm]

=> [mm] (\overrightarrow{x} [/mm] - [mm] \vektor{2 \\ 1 \\ 3} [/mm] * [mm] \vektor{-1 \\ -1 \\ -1} [/mm]

=> [mm] (x_{1}-2)*(-1) [/mm] + [mm] (x_{2}-1)*(-1)+ (x_{3}-3)*(-1)=0 [/mm]

=> [mm] x_{1}+x_{2}+x_{3}=6 [/mm]

=> [mm] x_{2};x_{3} [/mm] Nullsetzen
   [mm] x_{1} [/mm] = 6  => A(6/0/0)

   [mm] x_{1};x_{3} [/mm] Nullsetzen
   [mm] x_{2} [/mm] = 6  => B(0/6/0)

   [mm] x_{1};x_{2} [/mm] Nullsetzen
   [mm] x_{3} [/mm] = 6  => C(0/0/6)

=> Paramtergleichung:

E: [mm] (\overrightarrow{OA} [/mm] + r * [mm] (\overrightarrow{AB} [/mm] + s * [mm] (\overrightarrow{AC} [/mm]

=> Meine Lösung:
E: [mm] \vektor{6 \\ 0 \\ 0} [/mm] + r * [mm] \vektor{-6 \\ 6 \\ 0} [/mm] + s * [mm] \vektor{-6 \\ 0 \\ 6} [/mm]


Die Lösung laut Buch ist aber:
E: [mm] \vektor{6 \\ 0 \\ 0} [/mm] + r * [mm] \vektor{-1 \\ 1 \\ 0} [/mm] + s* [mm] \vektor{-1 \\ 0 \\ 1} [/mm]

Ist meine Lösung auch richtig oder habe ich einen Fehler gemacht?

Für Antworten wäre ich sehr dankbar :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalenform zu Parameterform: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Mi 03.04.2013
Autor: reverend

Hallo Morbz, [willkommenmr]

vorab: Deine Lösung ist vollkommen richtig!

> Der Richtungsvektor der Geraden durch O(0/0/0) und P(1/1/1)
> ist der Normalenvektor der Ebene E. Der Punkt Q(2/1/3)
> liegt in der Ebene E. Bestimmen Sie eine Paramtergleichung
> der Ebene.
> Hallo,
> ich bin gerade bei der Abiturvorbereitung und habe leider
> ein kleines Problem mit der oberen Aufgabe.

>

> Mein Lösungsansatz:
> [mm]g:\overrightarrow{x}= \overrightarrow{OO}[/mm] + r*
> [mm]\overrightarrow{OP}[/mm]

>

> => [mm]g:\overrightarrow{x}= \vektor{0 \\ 0 \\ 0}[/mm] + r*
> [mm]\vektor{-1 \\ -1 \\ -1}[/mm]

>

> => [mm](\overrightarrow{x}[/mm] - [mm]\vektor{2 \\ 1 \\ 3}[/mm] * [mm]%5Cvektor%7B-1%20%5C%5C%20-1%20%5C%5C%20-1%7D[/mm]

>

> => [mm](x_{1}-2)*(-1)[/mm] + [mm](x_{2}-1)*(-1)+ (x_{3}-3)*(-1)=0[/mm]

>

> => [mm]x_{1}+x_{2}+x_{3}=6[/mm]

>

> => [mm]x_{2};x_{3}[/mm] Nullsetzen
> [mm]x_{1}[/mm] = 6 => A(6/0/0)

>

> [mm]x_{1};x_{3}[/mm] Nullsetzen
> [mm]x_{2}[/mm] = 6 => B(0/6/0)

>

> [mm]x_{1};x_{2}[/mm] Nullsetzen
> [mm]x_{3}[/mm] = 6 => C(0/0/6)

>

> => Paramtergleichung:

>

> E: [mm](\overrightarrow{OA}[/mm] + r * [mm](\overrightarrow{AB}[/mm] + s *
> [mm](\overrightarrow{AC}[/mm]

>

> => Meine Lösung:
> E: [mm]\vektor{6 \\ 0 \\ 0}[/mm] + r * [mm]\vektor{-6 \\ 6 \\ 0}[/mm] + s *
> [mm]\vektor{-6 \\ 0 \\ 6}[/mm]

>
>

> Die Lösung laut Buch ist aber:
> E: [mm]\vektor{6 \\ 0 \\ 0}[/mm] + r * [mm]\vektor{-1 \\ 1 \\ 0}[/mm] + s*
> [mm]\vektor{-1 \\ 0 \\ 1}[/mm]

Das ist die gleiche Ebene, sogar die Richtungsvektoren sind im Prinzip die gleichen, haben eben nur eine unterschiedliche Länge.

> Ist meine Lösung auch richtig oder habe ich einen Fehler
> gemacht?

>

> Für Antworten wäre ich sehr dankbar :)

Alles gut. Mach mal weiter so. ;-)

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]