www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungNormalenfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Normalenfunktion
Normalenfunktion < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mi 14.11.2007
Autor: Hello-Kitty

Aufgabe
Gegeben ist ein Kreis um M mit dem Radius r. Bestimmen Sie eine Normalenform und eine Parametergleichung, die den Kreis im Punkt B berühren.

a,) M(4|-1); r=15, B(b1|8) und b1<0

Hallo!
Ich kriege die Lösungen bzw. die Normalenform und die Parametergleichung nicht hin, kann mir nicht jemand helfen`?

Meine Bisherigen Rechnungen:

(x-4)²+(y+1)²= 225
(x-4)²+(8+1)²= 225
(x-4)²+ 81   = 225  |-81
(x-4)²       = 144  |Wurzel
dann ist

x-4= 12 oder gleich x-4= -12

also ist x1=16 und x2= -8 ...da  b1<0 ist B(-8|8)

kann mir bitte jemand beim Rest helfen? und grobe Fehler gerne melden^^


Danke!!!!

        
Bezug
Normalenfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Mi 14.11.2007
Autor: Hello-Kitty

Mag mir denn keiner Helfen? ..

Bezug
        
Bezug
Normalenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Mi 14.11.2007
Autor: Steffi21

Hallo, der Punkt (-8; 8) ist korrekt, jetzt brauchen wir die Gleichung einer Geraden, die durch diesen Punkt verläuft,

jetzt brauchen wir aus der Kreisgleichung eine Funktion:

[mm] (x-4)^{2}+(y+1)^{2}=225 [/mm]

löse alle Klammern über die Binomische Formel auf, du erhälst die quadratische Gleichung

[mm] y^{2}+2y-208+x^{2}-8x=0 [/mm]

über p-q-Formel bekommst du

[mm] y_1_2=-1\pm\wurzel{209-x^{2}+8x} [/mm]

da wir den oberen Halbkreis brauchen gilt

[mm] y=f(x)=-1+\wurzel{209-x^{2}+8x} [/mm]

jetzt brauchen wir den Anstieg an der Stelle x=-8, also f'(x)= ... (Kettenregel)

das ist m in der allgemeinen Gleichung y=mx+n

jetzt hast du ja noch den Punkt (-8; 8), damit kannst du n berechnen, fertig ist deine Gleichung, und so sieht das Bild dazu aus:

[Dateianhang nicht öffentlich]

oder du nimmst die Gerade durch (4; -1) und (-8; 8), berechne den Anstieg m, die gesuchte Gerade steht dazu senkrecht, also [mm] m_1*m_2=-1, [/mm] das Ergebis ist identisch,

Steffi



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]