www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungNormen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Normen
Normen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normen: Frage zur Normberechnung
Status: (Frage) beantwortet Status 
Datum: 20:19 Di 15.02.2005
Autor: cherio_2

halli hallo,

so schnell geht das mal wieder und ich bin wieder hier :)

habe diesal eine frage bezüglich den normierten vektorräumen.
Habe soweit die Definiton verstanden sowie die euklidische norm,...hänge gerade bei der definition der maximumnorm sowie der summennorm.habe überhaupt keine ahnung wie man die berechnet ....

also über die parallelogrammgleichung soll man herausfinden,daß es kein inneres produkt auf dem [mm] \IR [/mm] n geben kann,für die Maximumnorm = [mm] \wurzel{(x,x)} [/mm] oder summennorm [mm] =\wurzel{(x,x)} [/mm] für alle x [mm] \in\IR [/mm] n .

Hier beweisen sie es indem sie die beiden ersten einheitsvektoren
in die parallelogrammgleichung einsetzten und zeigen,daß es je 2 verschiedene ergebnisse gibt.

würde es gerne nachvollziehen,fehlt mir dafür aber die grundkenntnis wie ich diese beiden normen praktisch ausrechne....

kann mir jemand einen tip geben oder es mir an einen praktischne beispiel zeigen ?

wäre euch unheimlich dankbar !

mfg

nadine

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Normen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Di 15.02.2005
Autor: andreas

hi

die summennorm (oder auch 1-norm) ist definiert als [m] \| \textbf{\textrm{v}} \|_1 = \sum_{i=1}^n |v_i| = |v_1| + |v_2| + \hdots + |v_n| [/m] und die maximumsnorm ist definiert als [m] \| \textbf{\textrm{v}} \|_\infty = \max_{i=1, \hdots, n} |v_i| [/m] (dies ist einfach der betragsmäßig größte eintrag des vektors), wenn der vektor die gestalt

[m] \textbf{\textrm{v}} = \left( \begin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_n \end{array} \right) [/m]

hat.

mal ein beispiel für $n=2$, also für den vektorraum [mm] $\mathbb{R}^2$. [/mm] sei

[m] \textbf{\textrm{v}} = \left( \begin{array}{c}-2 \\ 1 \end{array} \right) \in \mathbb{R}^2 [/m],
dann ist [m] \| \textbf{\textrm{v}} \|_1 = \sum_{i=1}^2 |v_i| = |v_1| + |v_2| = |-2| + |1| = 2 + 1 = 3 [/m] und [m] \| \textbf{\textrm{v}} \|_\infty = \max_{i=1, 2} |v_i| = \max \{|v_1|, |v_2| \} = \max \{ |-2|, |1| \} = \max \{ 2, 1 \} = 2 [/m].

grüße
andreas

Bezug
                
Bezug
Normen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:29 Mi 16.02.2005
Autor: cherio_2

hi andreas,

super vielen dank für deine detaillierte antwort.werd mich gleich mal ransetzten und gucken ob das jetzt klappt....

lg
nadine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]