www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisNormen äquivalent
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Normen äquivalent
Normen äquivalent < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normen äquivalent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Mo 14.11.2011
Autor: kevin-m.

Aufgabe
SATZ 1: [mm] \\ [/mm]
Sei $X$ ein vollständiger Vektorraum bezüglich der Normen [mm] $\left \| . \right \|_1$ [/mm] und [mm] $\left \| . \right \|_2$. [/mm] Gilt [mm] $\left \| x \right \|_1 \leq [/mm] c [mm] \left \| x \right \|_2$ [/mm] für jedes Element $x [mm] \in [/mm] X$, so sind die Normen [mm] $\left \| . \right \|_1$ [/mm] und [mm] $\left \| . \right \|_2$ [/mm] äquivalent.

Hallo,

in meinem Funktionalanalysis-Skript findet sich ein Beweis zu  Satz 1, der folgenden Satz verwendet:

SATZ 2:
"Seien $X$ und $Y$ zwei Banachräume und sei $T$ eine stetige lineare, bijektive Abbildung von $X$ nach $Y$. Dann ist [mm] $T^{-1}$ [/mm] stetig."

Da mir der Beweis (zu SATZ 1) nicht ganz klar ist, würde ich hier gerne eine Frage dazu stellen.

Im Beweis heißt es zu Beginn:

"Da [mm] $\left \| x \right \|_1 \leq [/mm] c [mm] \left \| x \right \|_2$ [/mm] für alle $x [mm] \in [/mm] X$ gilt, ist die Identität [mm] $\mathrm{id}_X [/mm] : (X, [mm] \left \| . \right \|_2) \to [/mm] (X, [mm] \left \| . \right \|_1)$ [/mm] stetig."

Genau das verstehe ich nicht. Stetigkeit bedeutet per definitionem, dass die Urbilder offener Mengen offen sind.

Wie ist da der genaue Zusammenhang?

Viele Grüße,
Kevin

        
Bezug
Normen äquivalent: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Mo 14.11.2011
Autor: fred97


> SATZ 1: [mm]\\[/mm]
>  Sei [mm]X[/mm] ein vollständiger Vektorraum bezüglich der Normen
> [mm]\left \| . \right \|_1[/mm] und [mm]\left \| . \right \|_2[/mm]. Gilt
> [mm]\left \| x \right \|_1 \leq c \left \| x \right \|_2[/mm] für
> jedes Element [mm]x \in X[/mm], so sind die Normen [mm]\left \| . \right \|_1[/mm]
> und [mm]\left \| . \right \|_2[/mm] äquivalent.
>  Hallo,
>  
> in meinem Funktionalanalysis-Skript findet sich ein Beweis
> zu  Satz 1, der folgenden Satz verwendet:
>  
> SATZ 2:
>  "Seien [mm]X[/mm] und [mm]Y[/mm] zwei Banachräume und sei [mm]T[/mm] eine stetige
> lineare, bijektive Abbildung von [mm]X[/mm] nach [mm]Y[/mm]. Dann ist [mm]T^{-1}[/mm]
> stetig."
>  
> Da mir der Beweis (zu SATZ 1) nicht ganz klar ist, würde
> ich hier gerne eine Frage dazu stellen.
>  
> Im Beweis heißt es zu Beginn:
>
> "Da [mm]\left \| x \right \|_1 \leq c \left \| x \right \|_2[/mm]
> für alle [mm]x \in X[/mm] gilt, ist die Identität [mm]\mathrm{id}_X : (X, \left \| . \right \|_2) \to (X, \left \| . \right \|_1)[/mm]
> stetig."
>  
> Genau das verstehe ich nicht. Stetigkeit bedeutet per
> definitionem, dass die Urbilder offener Mengen offen sind.
>  
> Wie ist da der genaue Zusammenhang?

Seien X und Y zwei normierte Räume und f:X [mm] \to [/mm] Y eine Abb.

1. f ist in [mm] x_0 \in [/mm] X stetig  [mm] \gdw [/mm]  für jede Folge [mm] (x_n) [/mm] in X mit [mm] ||x_n-x_0||_X \to [/mm] 0 (n [mm] \to \infty) [/mm] gilt:

               [mm] ||f(x_n)-f(x_0)||_Y \to [/mm] 0 (n [mm] \to \infty). [/mm]

2. f ist auf X stetig [mm] \gdw [/mm] f ist in jedem x [mm] \in [/mm] X stetig.

FRED

>  
> Viele Grüße,
>  Kevin


Bezug
                
Bezug
Normen äquivalent: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:10 Mo 14.11.2011
Autor: kevin-m.

Hallo,

Vielen Dank für die Antwort!
Man muss also die Definition der  Folgenstetigkeit verwenden.

Gruß,
Kevin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]