www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNotwendige und hinreichende Kriterien für Extremwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Notwendige und hinreichende Kriterien für Extremwerte
Notwendige und hinreichende Kriterien für Extremwerte < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Notwendige und hinreichende Kriterien für Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Do 11.03.2004
Autor: Ute

Warum nennt man f"(a) auch die Krümmung des Graphen/der Funktion in a?

        
Bezug
Notwendige und hinreichende Kriterien für Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Do 11.03.2004
Autor: Julius

Liebe Ute!

Wir wollen es nicht zu kompliziert, sondern anschaulich machen.

Wenn man an einem Punkt [mm]f''(a)>0[/mm] hat, dann bedeutet das, dass die Steigung der Funktion in einer Umgebung von [mm]a[/mm] von links nach rechts immer größer wird. Stell dir mal den Graphen einer Funktion vor, deren Steigung immer größer wird und "durchfahre" diese Kurve mal von links nach rechts. Dann machst du ganz anschaulich eine Linkskurve. Man sagt, die Kurve hat eine Linkskrümmung. Je betraglich größer die zweite Ableitung ist, desto "steiler" wird die Kurve, d.h. desto größer ist die Krümmung.

Wenn man an einem Punkt [mm]f''(a)<0[/mm] hat, dann bedeutet das, dass die Steigung der Funktion in einer Umgebung von [mm]a[/mm] von links nach rechts immer kleiner wird. Stell dir mal den Graphen einer Funktion vor, deren Steigung immer kleiner wird und "durchfahre" diese Kurve mal von links nach rechts. Dann machst du ganz anschaulich eine Rechtskurve. Man sagt, die Kurve hat eine Rechtskrümmung. Je betraglich größer die zweite Ableitung ist, desto "steiler" wird die Kurve, d.h. desto größer ist die Krümmung.

Wenn auf einem gewissen Bereich [mm]f''(x)=0[/mm] gilt, dann ändert sich die Steigung der Funktion [mm]f[/mm] in diesem Bereich überhaupt nicht: man hat eine Gerade, also gar keine Krümmung.

Anschaulich einigermaßen klar? :-)

Liebe Grüße
julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]