www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungNull-, Polstellen, Asymptoten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Null-, Polstellen, Asymptoten
Null-, Polstellen, Asymptoten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Null-, Polstellen, Asymptoten: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:21 Di 30.01.2007
Autor: Mone25

Aufgabe
Untersuchen Sie die Funktion auf Nullstellen, Polstellen und Asymptoten. Berechnen Sie auch noch zusätzlich den Funktionswert f(0).

f: x -> [mm] \bruch{2x-5}{x-3} [/mm]

Hallo,
ich rechne nun die Aufgabe schon x-mal, aber irgendwie bin ich mir recht unsicher, ob das alles stimmt, wie ich's angehe. Also...

...f: x -> 2x-5 / x-3 ; Df=R \ {3}

Nullstellen:  
             0=2x-5 / x-3
             0=(2x-5):(x-3) |*(x-3)
             0=2x-5         |+5
             5=2x           |:2
             x=2,5  <-- 1. Nullstelle

   0=(2x-5):(x-3)
   0=2x+ 5/3       |-5/3
-5/3=2x            |:2
   x=-5/6            <-- 2. Nullstelle

Asymptotisches Verhalten:

[mm] \limes_{x\rightarrow\infty} \bruch{2x-5}{x-3} [/mm]

                           [mm] \bruch{x}{x}* \bruch{2-5}{-3}= [/mm]
                          
                            = [mm] \bruch{-3}{-3}= [/mm]

                            =1

Funktionswert f(0):

f(x) = 2x-5 / x-3
f'(x)= 2/1
0 = 2



Soweit bin ich gekommen...hoffentlich sind die Lösungsschritte verständlich!

Über jede Hilfe und jeden Hinweis bin ich dankbar!

LG,
Mone

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
            
            

        
Bezug
Null-, Polstellen, Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Di 30.01.2007
Autor: M.Rex

Hallo

> Untersuchen Sie die Funktion auf Nullstellen, Polstellen
> und Asymptoten. Berechnen Sie auch noch zusätzlich den
> Funktionswert f(0).
>  
> f: x -> [mm]\bruch{2x-5}{x-3}[/mm]
>  Hallo,
> ich rechne nun die Aufgabe schon x-mal, aber irgendwie bin
> ich mir recht unsicher, ob das alles stimmt, wie ich's
> angehe. Also...
>  
> ...f: x -> 2x-5 / x-3 ; Df=R \ {3}
>  
> Nullstellen:  
> 0=2x-5 / x-3
>               0=(2x-5):(x-3) |*(x-3)
>               0=2x-5         |+5
>               5=2x           |:2
>               x=2,5  <-- 1. Nullstelle

Korrekt, aber das ist auch die einzige Nullstelle. Der Bruch wird dann gleich Null, wenn der Zähler Null wird.

>  
> 0=(2x-5):(x-3)
>     0=2x+ 5/3       |-5/3
>  -5/3=2x            |:2
>    x=-5/6            <-- 2. Nullstelle

Nee, siehe oben.

>  
> Asymptotisches Verhalten:
>
> [mm]\limes_{x\rightarrow\infty} \bruch{2x-5}{x-3}[/mm]
>  
> [mm]\bruch{x}{x}* \bruch{2-5}{-3}=[/mm]

Das funktioniert so nicht. Du kannst den Brich nicht so auflösen.
                            

> = [mm]\bruch{-3}{-3}=[/mm]
>  
> =1

Um die Asymptote herauszufinden, musst du den Zähler durch den Nenner teilen, also die Polynomdivision machen. Also:

[mm] (2x-5):(x-3)=\red{2}+\bruch{1}{x-3} [/mm]

Der rot markierte, nicht gebrochen-rationale Teil ist die Asymptote, also y=2.
Begründung:

=
[mm] \limes_{x\rightarrow\infty}{\bruch{2x-5}{x-3}} [/mm]
[mm] =\limes_{x\rightarrow\infty}{2+\bruch{1}{x-3}} [/mm]
[mm] =\limes_{x\rightarrow\infty}{2}+\limes_{x\rightarrow\infty}{\bruch{1}{x-3}} [/mm]
=2+0
=2

>
> Funktionswert f(0):
>
> f(x) = 2x-5 / x-3
>  f'(x)= 2/1
>  0 = 2

Was willst du damit sagen. Wozu die Ableitung.

[mm] f(0)=\bruch{2+0-5}{0-3}=\bruch{5}{3} [/mm]


>


Du hast noch die Polstellen, also die Nullstellen des Nenners vergessen.

>
>
> Soweit bin ich gekommen...hoffentlich sind die
> Lösungsschritte verständlich!
>  
> Über jede Hilfe und jeden Hinweis bin ich dankbar!
>  
> LG,
>  Mone
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>              
>  

Marius

Bezug
                
Bezug
Null-, Polstellen, Asymptoten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 So 04.02.2007
Autor: Mone25

Hallo Marius,

vielen lieben Dank für deine Korrekturlesung und die Hinweise! Ich werd mir jetzt nochmal alles in Ruhe anschauen, und vielleicht klappts ja dann.

LG, Mone

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]