www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteNullfolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Nullfolge
Nullfolge < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullfolge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:37 Mi 04.10.2006
Autor: nina13

Aufgabe
Zeigen sie, dass die Differenzenfolge [mm] (a_{n}-g) [/mm] eine Nullfolge ist.

b) [mm] ((n^2+n)/(5*n^2)) [/mm] ; g=0,2

Ich habe diese Aufgabe jetzt nach dem gleichen Muster wie im Unterricht gerechnet, allerdings verstehe ich nicht, was dabei jetzt eigentlich rauskommen soll, bzw. wie ich das Ergebnis formulieren muss. Außerdem weiß ich nicht, ob meine Rechnung stimmt. Kann vielleicht jemand helfen?

Meine Rechnung bisher (wie im Unterricht)

Wir zeigen, dass [mm] (a_{n}-g) [/mm] = [mm] ((n^2+n)/(5*n^2)) [/mm] eine Nullfolge ist.

[mm] ((n^2+n)/(5*n^2)-0,2) [/mm] = [mm] ((n^2+n-0,2*(5*n^2))/5*n^2) [/mm] = [mm] n/(5*n^2) [/mm]

= 1/(5*n)


1/(5*n) < [mm] \varepsilon [/mm]

1 < [mm] \varepsilon*(5*n) [/mm]

[mm] 1/\varepsilon [/mm] < 5*n

n > [mm] 1/(5*\varepsilon) [/mm]

Ist das richtig bis dahin? Ab hier weiß ich nicht mehr, was ich weiter machen soll.

        
Bezug
Nullfolge: fertig!
Status: (Antwort) fertig Status 
Datum: 18:47 Mi 04.10.2006
Autor: Loddar

Hallo Nina!


Abgesehen von der kleinen Anmerkung, dass Du bei [mm] $\bruch{1}{5*n} [/mm] \ < \ [mm] \varepsilon$ [/mm] rein formal die Betragsstriche vergessen hast (die hier aber dann auch schnell vernachlässigt werden dürfen), hast Du alles richtig gemacht.

[ok]


Damit hast Du nun gezeigt, dass zu jedem [mm] $\varepsilon>0$ [/mm] ein [mm] $n_0$ [/mm] existiert, für welches alle folgenden Glieder [mm] $a_{n\ge n_0}$ [/mm] innerhalb der vorgegebenen [mm] $\varepsilon$-Umgebung [/mm] liegen, wenn gilt:

[mm] $n_0 [/mm] \ [mm] \ge [/mm] \ [mm] \bruch{1}{5*\varepsilon}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]