www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenNullfolgenbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Nullfolgenbeweis
Nullfolgenbeweis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullfolgenbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 So 20.02.2011
Autor: kushkush

Aufgabe
Beweise:

1. [mm] $\limes_{n \rightarrow \infty} a_{n}=\pm \infty \Rightarrow \frac{1}{a_{n}}=0$ [/mm]

2. [mm] $\limes_{n\rightarrow \infty} a_{n}=0 \Rightarrow \limes_{n \rightarrow \infty} \frac{1}{|a_{n}|}=\infty$ [/mm] Was muss zusätzlich vorausgesetzt werden, damit gilt: [mm] $\frac{1}{a_{n}}=+\infty$ [/mm] bzw. [mm] $\frac{1}{a_{n}}=-\infty$ [/mm]

Hallo,


1. [mm] $x:=a_{n}\in \IN$ $\limes_{x\rightarrow \infty} \frac{1}{x}=0$ [/mm]

[mm] $\forall [/mm] \ n>N: [mm] |\frac{1}{x}|<\epsilon$ [/mm]

2. Wie soll man das zeigen, zu zeigen wäre ja [mm] $\frac{1}{0}= \infty$ [/mm] Aber ist das nicht so definiert???


Ich habe diese Frage in keinem anderen Forum gestellt.


Danke und Gruss

kushkush

        
Bezug
Nullfolgenbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 So 20.02.2011
Autor: kamaleonti

Hi,
> Beweise:
>  
> 1. [mm]\limes_{n \rightarrow \infty} a_{n}=\pm \infty \Rightarrow \frac{1}{a_{n}}=0[/mm]
>  
> 2. [mm]\limes_{n\rightarrow \infty} a_{n}=0 \Rightarrow \limes_{n \rightarrow \infty} \frac{1}{|a_{n}|}=\infty[/mm]
> Was muss zusätzlich vorausgesetzt werden, damit gilt:
> [mm]\frac{1}{a_{n}}=+\infty[/mm] bzw. [mm]\frac{1}{a_{n}}=-\infty[/mm]
>  Hallo,
>  
>
> 1. [mm]x:=a_{n}\in \IN[/mm] [mm]\limes_{x\rightarrow \infty} \frac{1}{x}=0[/mm]
>  
> [mm]\forall \ n>N: |\frac{1}{x}|<\epsilon[/mm]

Mir ist nicht ganz klar, was du hiermit meinst.
Betrachte o. E. den Fall [mm] \lim_{n\to\infty}a_n=\infty. [/mm] Das bedeutet, zu jedem [mm] c\in\IN [/mm] existiert ein [mm] n_c\in\IN [/mm] mit [mm] a_n\geq [/mm] c für alle [mm] n\geq n_c. [/mm]
Daraus folgt für jedes [mm] \varepsilon=\frac{1}{c} [/mm] ... für [mm] n\geq n_c [/mm]

>  
> 2. Wie soll man das zeigen, zu zeigen wäre ja [mm]\frac{1}{0}= \infty[/mm]
> Aber ist das nicht so definiert???

Der Beweis dafür verwendet obigen Ansatz, nur sozusagen in der Rückrichtung.
[mm] lim_{n\to\infty}a_n=0, [/mm] also für alle [mm] \varepsilon=\frac{1}{c}>0 [/mm] gibt es ein [mm] n_\varepsilon [/mm] mit [mm] |a_n|<\varepsilon [/mm] für alle [mm] n\geq n_\varepsilon. [/mm]
Dann gilt auch für alle [mm] n\geq\varepsilon [/mm] (Umstellen!): [mm] \frac{1}{|a_n|}>\frac{1}{\varepsilon}=c. [/mm] Also divergiert [mm] \frac{1}{|a_n|}. [/mm]

Gruß

Bezug
                
Bezug
Nullfolgenbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Mo 21.02.2011
Autor: kushkush

Hallo kamaleonti,


wie kommst du denn auf [mm] $\epsilon=\frac{1}{c}$? [/mm]



Danke für deine Hilfe.



Gruss

kushkush

Bezug
                        
Bezug
Nullfolgenbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mo 21.02.2011
Autor: kamaleonti

Hi kushkush,
> Hallo kamaleonti,
>  
>
> wie kommst du denn auf [mm]\epsilon=\frac{1}{c}[/mm]?

Da c eine positiv reelle Zahl ist, darf [mm] \varepsilon [/mm] so umgeschrieben werden. Wenn c groß wird, wird [mm] \varepsilon [/mm] (beliebig) klein und gerade das braucht man ja für Konvergenz.

Gruß


Bezug
                
Bezug
Nullfolgenbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:41 Fr 25.02.2011
Autor: kushkush

Hallo kamaleonti,


[mm] $\forall [/mm] \ [mm] \epsilon=\frac{1}{c}<0 [/mm] \ [mm] \exists [/mm] \ [mm] n_{\epsilon}: [/mm] \ [mm] |a_{n}|>\epsilon [/mm]  \ [mm] \forall n\ge n_{\epsilon} [/mm] $

[mm] $\Rightarrow \forall [/mm] \ [mm] n\le \epsilon: [/mm] \ [mm] \frac{1}{|a_{n}|}<\frac{1}{\epsilon}=c$ [/mm]


Stimmt das so?

Dankeschön



Gruss

kushkush

Bezug
                        
Bezug
Nullfolgenbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Fr 25.02.2011
Autor: schachuzipus

Hallo kushkush,

> Hallo kamaleonti,
>
>
> [mm]\forall \ \epsilon=\frac{1}{c}<0 \ \exists \ n_{\epsilon}: \ |a_{n}|>\epsilon \ \forall n\ge n_{\epsilon}[/mm]

[haee]

>
> [mm]\Rightarrow \forall \ n\le \epsilon: \ \frac{1}{|a_{n}|}<\frac{1}{\epsilon}=c[/mm]
>
>
> Stimmt das so?

Nein, [mm]a_n[/mm] ist Nullfolge bedeutet: [mm]\forall\varepsilon>0 \ \exists n(\varepsilon)\in\IN \ \forall n\ge n(\varepsilon) \ : \ |a_n|<\varepsilon[/mm]

Das gilt für alle [mm]\varepsilon>0[/mm], insbesondere für [mm]\varepsilon=\frac{1}{c}[/mm] für bel. [mm]c>0[/mm]

Dann hast du also für [mm]n\ge n(\varepsilon) \ : \ |a_n|<\varepsilon=\frac{1}{c}[/mm]

Kehrbruch: [mm]\frac{1}{|a_n|}>c[/mm]

Da [mm]c>0[/mm] bel. gewählt war, überschreitet also [mm]\frac{1}{|a_n|}[/mm] jede positive Schranke, ist also unbeschränkt und divergiert folglich gegen [mm]\infty[/mm]



> Dankeschön
>
>
>
> Gruss
>
> kushkush

LG

schachuzipus


Bezug
                                
Bezug
Nullfolgenbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:14 Fr 25.02.2011
Autor: kushkush

Hallo schachuzipus,


Danke.



Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]