www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehreNullmenge, Teilmenge, Element?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Naive Mengenlehre" - Nullmenge, Teilmenge, Element?
Nullmenge, Teilmenge, Element? < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullmenge, Teilmenge, Element?: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:50 Sa 22.10.2011
Autor: julius93

Aufgabe
a)0 e Potenzmenge M
b)0 Teilmenge Potenzmenge M
c)M e Potenzmenge M
d)M Teilmenge Potenzmenge
e) {0} e Potenzmenge 0
f) {0} Teilmenge Potenzmenge 0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo Community,
ich habe ein paar Fragen zu diesen sehr trivial aussehenden Aufgaben.
Erstmal zu meiner Schreibweise: bin zum ersten Mal hier deswegen weiß ich nicht wie ich die mathematischen Zeichen schreiben kann. M ist eine Menge. e steht für Element und die "0" steht für die leere Menge. So nun zu meinen Gedanken:
a) falsch, da keine Mengenklammern um die 0 sind. Die Potenzmenge von ist ja die Menge aller Teilmengen von M. Stimmt es dass die Aussage falsch ist, da keine Mengenklammern um die 0 sind?
b) würde ich auch wieder falsch sagen, Begründung wie oben
c)hier bin ich mir nicht sicher..
d) ich denke die Aussage ist richtig, da jede Menge selbst Teilmenge ihrer Potenzmenge ist.
e) und f) leider weiß ich nichts mit den Mengenklammern um die leere Menge anzufangen. Was ist der Unterschied zwischen 0 und {0}?
Ich hoffe ihr könnt mir helfen, habe gleich zu Anfang des Studiums Probleme..


        
Bezug
Nullmenge, Teilmenge, Element?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Sa 22.10.2011
Autor: ChopSuey

Hi Julius,

werf' doch mal einen Blick auf den Formeleditor direkt unter dem Eingabefeld. Das ist recht selbsterklärend.

Zu deinen Fragen:

a) Wenn die 0 für die leere Menge $ [mm] \emptyset [/mm] $ steht, dann gilt auf jeden Fall $ [mm] \emptyset \in \mathcal{P}(M) [/mm] $

Warum? Die leere Menge $ [mm] \emptyset$ [/mm] ist Teilmenge jeder Menge. Folglich ist sie auch ein Element der Menge aller Teilmengen. Einleuchtend?

b) ist korrekt. Siehe ersten Abschnitt. Die leere Menge ist Teilmenge jeder Menge. Sie ist folglich sowohl Element von $ [mm] \mathcal{P}(M) [/mm] $ als auch Teilmenge davon.

c) ist korrekt. Es gilt $ M [mm] \subset [/mm] M $ für alle Mengen. Also $ M [mm] \in \mathcal{P}(M) [/mm] $

d) falsch. Gegenbeispiel: $ M = [mm] \{1,2\}; [/mm] \ [mm] \mathcal{P}(M) [/mm] = [mm] \{ \emptyset, \{1\}, \{2\}, \{1,2\} \} [/mm] $

Es gilt zwar $ M [mm] \in \mathcal{P}(M) [/mm] $ aber nicht $ M [mm] \subset \mathcal{P}(M) [/mm] $. Die Menge $ M' = [mm] \{ \{1,2\}\} [/mm] $ zB wäre Teilmenge von [mm] $\mathcal{P}(M)$ [/mm]

e) $ [mm] \mathcal{P}(\emptyset) =\{\emptyset\} [/mm] $

Also gilt $ [mm] \{\emptyset\} \notin \mathcal{P}(\emptyset) [/mm] $ aber $ [mm] \{\emptyset\} \subset \mathcal{P}(\emptyset) [/mm]  $

Viele Grüße
ChopSuey


Bezug
                
Bezug
Nullmenge, Teilmenge, Element?: Aufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Sa 22.10.2011
Autor: julius93

Vielen Dank ChopSuey,
deine Antwort hat mir sehr geholfen und ich habe es verstanden.
Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]