www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungNullstelle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Nullstelle
Nullstelle < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:33 Do 09.03.2006
Autor: chaoslegend

Aufgabe
An welcher Stelle x{s} und unter welchem Winkel schneidet der Graph der Funktion f(x)= 2 sin(3x) die x-Achse im Intervall [o; [mm] \pi] [/mm] ?

Hallo!
Ich brauche für einen Winkel die Nullstelle [mm] x_{s}... [/mm] nur leider weiß ich nicht wie ich f(x) nach x auflösen soll... weil mit der Stelle x:{s} kann ich dann den Winkel berechnen [mm] [x_{s} [/mm] ist eine NULLSTELLE;)]

müsste ja f(x)= 0 setzen => 0 = 2 sin(3x) ... nur wie löst man das jetzte nach x auf??? [die Lösung soll  [mm] \bruch{\pi}{3} [/mm] sein]

        
Bezug
Nullstelle: Nullstellen der Sinusfunktion
Status: (Antwort) fertig Status 
Datum: 18:45 Do 09.03.2006
Autor: Roadrunner

Hallo chaoslegend!


Zunächst einmal stellen wir um nach [mm] $\sin(...) [/mm] \ = \ 0$ :

[mm] $2*\sin(3x) [/mm] \ = \ 0$   [mm] $\left| \ :2$ $\gdw$ $\sin(3x) \ = \ 0$ Nun sollten wir wissen, dass der Sinus eine periodische Funktion ist und damit unendlich viele Nullstellen. Allgemein lassen diese sich darstellen als: $x_k \ = \ k*\pi$ mit $k \ \in \ \IZ$ . $\Rightarrow$ $3x \ = \ k*\pi$ $\gdw$ $x_k \ = \ \bruch{k*\pi}{3}$ Nun müssen wie untersuchen, für welche (ganzen) Zahlen $k_$ auch wirklich in unserem Intervall liegen: $k \ = \ 0$ $\Rightarrow$ $x_0 \ = \ \bruch{0*\pi}{3} \ = \ 0 \ \in \ \left[ \ 0 \ ; \ \pi \ \right]$ [ok] $k \ = \ 1$ $\Rightarrow$ $x_1 \ = \ \bruch{1*\pi}{3} \ = \ \bruch{\pi}{3} \ \in \ \left[ \ 0 \ ; \ \pi \ \right]$ [ok] $k \ = \ 2$ $\Rightarrow$ $x_2 \ = \ \bruch{2*\pi}{3} \ = \ \bruch{2}{3}\pi \ \in \ \left[ \ 0 \ ; \ \pi \ \right]$ [ok] $k \ = \ 3$ $\Rightarrow$ $x_3 \ = \ \bruch{3*\pi}{3} \ = \ \pi \ \in \ \left[ \ 0 \ ; \ \pi \ \right]$ [ok] $k \ = \ 4$ $\Rightarrow$ $x_4 \ = \ \bruch{4*\pi}{3} \ = \ \bruch{4}{3}\pi \ \not\in \ \left[ \ 0 \ ; \ \pi \ \right]$ [notok] Es gibt also insgesamt vie Lösungen im angegebenen Intervall. Gruß vom Roadrunner [/mm]

Bezug
                
Bezug
Nullstelle: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Do 09.03.2006
Autor: chaoslegend

Und woher wüsste ich dann [wenn mir die antwort nicht gegeben währe], welche von den lösungen nun richtig ist? [also mit welcher ich weiterrechnen soll...]?

Zwar könnte ich das jetzt vom Bild sehen [was gegeben ist], aber das ist ja nur eine skizze...

Bezug
                        
Bezug
Nullstelle: Antwort
Status: (Antwort) fertig Status 
Datum: 01:15 Sa 11.03.2006
Autor: sambalmueslie

Tja leider geht das nicht so einfach, denn der Sinus ist eine periodische Funkion.
Wenn kein Intervall angegeben ist gibt es unendlich viele Lösungen.

$ [mm] \sin(x) [/mm] = 0  [mm] \gdw [/mm] x = k [mm] *\pi [/mm]  , k  [mm] \in \IZ [/mm] $

so könntest dass dann angeben.

Bezug
                                
Bezug
Nullstelle: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 So 12.03.2006
Autor: chaoslegend

danke, hab mittlerweile ne einfachere lösung gefunden^^
man nehme Substitution:D

also für 3x einfach z einsetzten und dann nach x = arcsin z auflösen, anschließend ausrechnen und rücksubstitution;)

trotzdem danke;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]