www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisNullstellen (X) erraten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Nullstellen (X) erraten
Nullstellen (X) erraten < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen (X) erraten: Da gibt es doch einen Trick..?
Status: (Frage) beantwortet Status 
Datum: 17:21 So 29.01.2006
Autor: Quaeck

Aufgabe
f(x)= [mm] x^3-2x^2-8x [/mm]

Es gibt doch immer mal solche Funktionen, wobei man "x" erraten muss, um eine Nullstelle zu bekommen. Doch jetzt habe ich den Trick nicht mehr auf Lager mit dem es ganz einfach ist diese Zahl zu erraten. Ich glaube es gibt die Regel, dass immer die Teiler letzten Zahl in der Funktion für "x" einsetzbar ist um auf das Ergebnis null zu kommen, oder? Wisst ihr was ich meine? Kennt ihr diese Regel noch, könnt ihr mir vielleicht sagen wie diese nochmal war, habe sie leider nicht mehr parat und brauche sie.. Danke euch für jede Antwort.=)

        
Bezug
Nullstellen (X) erraten: Teiler des Absolutgliedes
Status: (Antwort) fertig Status 
Datum: 17:29 So 29.01.2006
Autor: Loddar

Hallo Quaeck!


Du bist schon auf dem richtigen Weg. Bei Existenz von ganzzahligen Nullstelle(n) handelt es sich um ganzzahlige Teiler (beiderlei Vorzeichens) des Absolutgliedes, also der Term ohne $x_$ .


In Deinem Falle geht es aber schneller, indem Du zunächst $x_$ ausklammerst und anschließend die MBp/q-Formel anwendest.


Gruß
Loddar


Bezug
                
Bezug
Nullstellen (X) erraten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 So 29.01.2006
Autor: Quaeck

Genau das meinte ich, dankeschön für deine Antwort.
Das Ausklammern und die folgende PQ-Formel, wusste ich zwar schon aber auch danke dafür.=)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]