Nullstellen bei Gl. 4. Grades < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:59 Do 19.10.2006 | Autor: | Kati |
Aufgabe | Seien p, q, r [mm] \in \IC [/mm] und f(x) = [mm] x^{4} [/mm] +p [mm] x^{2} [/mm] + qx +r [mm] \in \IC [/mm] [x] . Wir setzen a = p/2, b=-r/4 + [mm] p^{2}/16, [/mm] c = - [mm] q^{2}/64 [/mm] sowie g(x) [mm] =x^{3} [/mm] +a [mm] x^{2} [/mm] + bx +c
Zeigen Sie: Wenn u, v, w [mm] \in \IC [/mm] so gewählt sind, dass uvw=-q/8 gilt und g(x) =(x - [mm] u^{2}) [/mm] (x - [mm] v^{2})(x [/mm] - [mm] w^{2}), [/mm] dann ist u+v+w eine Nullstelle von f(x)
Hinweis: Es gilt [mm] (u+v+w)^{2} [/mm] = [mm] u^{2} +v^{2}+w^{2} [/mm] +2(uv+uw+vw) und [mm] (u+v+w)^{4} [/mm] = [mm] ((u+v+w)^{2})^{2} [/mm] |
Ich habe diese Frage noch in keinem internetforum gestellt.
hallo.
ich denke dass das gar nicht so schwer ist nur irgendwie fehlt mir ein ansatz. ich hab schon hin und her gerechnet nur komm irgendwie auf nichts hilfreiches. kann mir hier mal irgendjemand sagen wie ich so anfangen könnte.
lg kati
|
|
|
|
> Seien p, q, r [mm]\in \IC[/mm] und f(x) = [mm]x^{4}[/mm] +p [mm]x^{2}[/mm] + qx +r [mm]\in \IC[/mm]
> [x] . Wir setzen a = p/2, b=-r/4 + [mm]p^{2}/16,[/mm] c = - [mm]q^{2}/64[/mm]
> sowie g(x) [mm]=x^{3}[/mm] +a [mm]x^{2}[/mm] + bx +c
> Zeigen Sie: Wenn u, v, w [mm]\in \IC[/mm] so gewählt sind, dass
> uvw=-q/8 gilt und g(x) =(x - [mm]u^{2})[/mm] (x - [mm]v^{2})(x[/mm] - [mm]w^{2}),[/mm]
> dann ist u+v+w eine Nullstelle von f(x)
> Hinweis: Es gilt [mm](u+v+w)^{2}[/mm] = [mm]u^{2} +v^{2}+w^{2}[/mm]
> +2(uv+uw+vw) und [mm](u+v+w)^{4}[/mm] = [mm]((u+v+w)^{2})^{2}[/mm]
Hallo,
was hast Du denn bisher getan?
Ziel ist ja festzustellen, daß f(u+v+w)=0 ist.
Ich würde also erstmal f(u+v+w) berechnen.
Du hast die Information, daß uvw=-q/8 ist.
Mit g(x) [mm]=x^{3}[/mm] +a [mm]x^{2}[/mm] + bx +c und g(x) =(x - [mm]u^{2})[/mm] (x - [mm]v^{2})(x[/mm] - [mm]w^{2}),[/mm] kannst Du einen Koeffizientenvergleichmachen, woraus Du weitere Informationen über u,v,w erhältst, die Du dann (hoffentlich) bei f(u+v+w)=... einsetzen kannst.
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:34 Fr 20.10.2006 | Autor: | Kati |
Danke, das hat mir weitergeholfen. Auf die Idee mit dem Koeffizientenvergleich bin ich nicht gekommen.
Lg, Kati
|
|
|
|