www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisNullstellen einer Sinusfkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Nullstellen einer Sinusfkt
Nullstellen einer Sinusfkt < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen einer Sinusfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Mo 28.11.2005
Autor: Phoney

Hallo.
Eine ganz klitzekleine Frage zur Nullstellenberechnung habe ich.
Angenommen ich berechne die Nullstellen von

sin(2x+1) = 0
Mit dem Wissen, dass sin(0) = 0
2x+1 = 0 => x= -0,5

Ich möchte aber nun den Bereich der Periode betrachten, die hat die Länge [mm] \pi.Also [/mm] möchte ich das Intervall [mm] [0;\pi[ [/mm] betrachten

Jetzt habe ich allerdings eine Nullstelle, die ausserhalb des Intervalls liegt, gut, addiere ich die Periode hinzu, so ergibt sich eine Nullstelle bei [mm] x=-0,5+\pi. [/mm]

Und wo ist nun die zweite Nullstelle?

Ansonsten sagt man ja bei sin(x), dass man sich an der Symmetrie bei [mm] 0,5\pi [/mm] orientiert.

Und an welchem Punkt orientiere ich mich hier?

Grüße Phoney

        
Bezug
Nullstellen einer Sinusfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Mo 28.11.2005
Autor: Spellbinder


> Hallo.
>  Eine ganz klitzekleine Frage zur Nullstellenberechnung
> habe ich.
>  Angenommen ich berechne die Nullstellen von
>  
> sin(2x+1) = 0
>  Mit dem Wissen, dass sin(0) = 0
>  2x+1 = 0 => x= -0,5

>  
> Ich möchte aber nun den Bereich der Periode betrachten, die
> hat die Länge [mm]\pi.Also[/mm] möchte ich das Intervall [mm][0;\pi[[/mm]
> betrachten
>  
> Jetzt habe ich allerdings eine Nullstelle, die ausserhalb
> des Intervalls liegt, gut, addiere ich die Periode hinzu,
> so ergibt sich eine Nullstelle bei [mm]x=-0,5+\pi.[/mm]
>  
> Und wo ist nun die zweite Nullstelle?
>  
> Ansonsten sagt man ja bei sin(x), dass man sich an der
> Symmetrie bei [mm]0,5\pi[/mm] orientiert.
>
> Und an welchem Punkt orientiere ich mich hier?
>  
> Grüße Phoney

Also der Sinus ist [mm] 2\pi- [/mm] periodisch, das stimmt soweit. sin(x) hat Nullstellen bei 0, [mm] \pi [/mm] und [mm] 2\pi. [/mm] Mehr brauchst du schon gar nicht mehr zu wissen, denn sin(2x) wird durch die zwei gestaucht, hat also die halb so große Periode [mm] \pi, [/mm] wegen der 2 vor dem x. Demzufolge die Nullstellen bei 0, [mm] \bruch{\pi}{2} [/mm] und [mm] \pi. [/mm] Anschaulich kannst du dir auch vorstellen, dass die Funktion doppelt so schnell abläuft, da x kleinere Werte annehmen kann um dasselbe zu erreichen. mit sin(2x+1), also mit +1, verschiebst du die Sinuskurve lediglich dann noch um [mm] \bruch{1}{2} [/mm] nach links, da du auch schreiben kannst:

[mm] sin(2x+1)=sin(2(x+\bruch{1}{2})) [/mm]

demzufolge findest du die Nullstellen bei:

[mm] -\bruch{1}{2}, \bruch{\pi}{2}-\bruch{1}{2} [/mm] und bei [mm] \pi-\bruch{1}{2}. [/mm]

setzt du das für x in sin(2x+1) ein, erhältst du

[mm] sin(2(-\bruch{1}{2}+\bruch{1}{2}))=sin(0)=0, [/mm]
sin(2( [mm] \bruch{\pi}{2}-\bruch{1}{2}+bruch{1}{2}))=sin(2\bruch{\pi}{2})=sin(\pi)=0, [/mm]
und
[mm] sin(2(\pi-\bruch{1}{2}+\bruch{1}{2}))=sin(2\pi)=0 [/mm]

Ich hoffe, die Frage ist beantwortet,

gruß,

Spellbinder


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]