www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikNullstellen mit Hornerschema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Nullstellen mit Hornerschema
Nullstellen mit Hornerschema < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen mit Hornerschema: Algorithmus
Status: (Frage) beantwortet Status 
Datum: 12:42 Mo 28.02.2005
Autor: Morpheus

Gibt es ein Verfahren, um die Nullstellen eines höhergradigen Polynoms
p(t)= [mm] \summe_{k=1}^{N} [/mm] ak* [mm] t^k [/mm]
mit grad p>4 zu bestimmen? Bitte nichts mit Polynomdivision oder ausprobieren mit dem Hornerschema, indem man a0 in seine Primfaktoren aufspaltet, posten...;-) (Ist etwas zu aufwendig, finde ich)
Ich bräuchte irgendwas handfestes, was immer geht und nicht so lange braucht. Am besten was mit dem Hornerschema...
Thx Morph
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Nullstellen mit Hornerschema: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Mo 28.02.2005
Autor: Einstein

Mit dem Newtonschen Näherungsverfahren kann man alle Nullstellen (incl. imaginäre bzw. komplexe Nullstellen) von beliebigen Polynomen bestimmen.

Bezug
        
Bezug
Nullstellen mit Hornerschema: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Mo 28.02.2005
Autor: Julius

Hallo!

Explizite elemenare Lösungen, die nur mit Wurzeln auskommen (also radikalische Lösungsformeln),kann man nur für Polynome maximal vierten Grades finden. Das ist ein wichtiges Resultat der Algebra.

Für gewisse Polynomklassen höheren Grades gibt es auch (transzendente) Lösungsformeln, die aber beliebig unübersichtlich und unhandlich werden, siehe etwa []hier für ein Polynom fünften Grades.

Also kann man entweder nur Nullstellen raten (und dann per Polynomdivision oder Horner-Schema abspalten) oder, wie  "Einstein" angemerkt hat, numerisch approximieren.

Viele Grüße
Julius

Bezug
        
Bezug
Nullstellen mit Hornerschema: Nullstellen über Eigenwerte
Status: (Antwort) fertig Status 
Datum: 08:52 Sa 05.03.2005
Autor: TomJ

Ich hab mal ein Programm geschrieben, dass u.a. zu jedem Polynom beliebigen Grades eine entsprechende Matrix bildet, deren (numerisch berechnete) Eigenwerte die vollst. Lösungsmenge sind. Probleme dabei treten nur vereinzelzt in Trivialfällen (mehrfache Lösungen) auf.

Ich könnte also bei konkreten Problemen helfen.

Bezug
                
Bezug
Nullstellen mit Hornerschema: thx
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Sa 05.03.2005
Autor: Morpheus

danke für das Angebot, aber mir geht es eher um ein Verfahren, dass auch ohne Compi geht und recht schnell zum Erfolg führt, ohne das man raten muss!

Wenn die schnellste Methode darin besteht, die Faktoren von a0 als Nullstellen auszuprobieren und dann abzuspalten, dann muss ich mich damit abfinden;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]