Nullstellenbestimmung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:36 Do 10.05.2007 | Autor: | Pause |
Aufgabe | also, wenn ich hier alles aufliste, wird es viel.
machen wir es kurz:
Bestimmt Schnittstellen bei den funktionen:
f(x) = 3x²-7x+4
g(x) = 3x³-6x²-13x+17 |
hi Leute,
also, bis jetzt hab ich die mal gleich gestetzt und nach null aufgelöst.
wenn ichs nicht total verkakt hab, dann müsste da stehen:
0=3x³-9x²-6x+13
oder auch
[mm] 0=x³-6x²-2x+13\3
[/mm]
leider versage ich hier TOTAL... ich kenne die "regel" mit dem absoluten glied, oder auch die pq-formel. beides hier nicht anwendbar. ich habs mit raten versucht... ohne wirklichen erfolg...folglich erhoffe ich mir hier hilfe. wenn es machbar ist auch schnelle hilfe, sonst werd ich auf jeden fall heute abend gegen 22 uhr noch mal rein schauen... eigentlich brauch ich die lösung halt schon bis morgen.
vielen dank schon mal im vorraus
mfg
Matthias Gluth, alias Pause
ps:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:57 Do 10.05.2007 | Autor: | Pause |
OMG...
also wenn ich das so richtig sehe, dann hieße dass, dass ich mit dem, was ich bissher kann, oder können sollte, nicht in der lage bin diese aufgabe zu lösen.
vielen dank für die antwort, ich habe das mit den Cardanischen Formeln zwar weitestgehend verstanden, aber mir is nicht klar, wie mein leherer verlangen kann, das ich so etwas ALLEINE hin bekomme.
fals es noch einen oder mehrere wege gäbe um hier zu einer lösung zu kommen, so ist jede antwort von meiner seite her genre gesehen.
viele dank noch mal für die antwort.
mfg
Pause
ps: ich bin eigentlich erst 11klasse, 12 hab ich nur eingetragen, weil mein mathe LK bereits feststeht^^
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:09 Do 10.05.2007 | Autor: | leduart |
Hallo
Wenn die 2 fkt. richtig sind hast du mit Schulmitteln keine Chance! Vielleicht hast du oder dein Lehrer nen Druckfehler? wenn die 17 ne 11 wäre gäbs nämlich ne Lösung und 7 und 1 sind leicht zu verwechseln.
Gruss leduart
|
|
|
|
|
Status: |
(Korrektur) richtig (detailiert geprüft) | Datum: | 21:40 Do 10.05.2007 | Autor: | Pause |
hei leute, ihr seit göttlich^^
direkt gesehen habt ihr mir keinen deut geholfen, aber ihr habt mich auf die idee gebracht, dass ein fehler im rechenweg meines lehrers vorhanden ist!!!
dieser abschnitt ist nur ein teil einer aufgabe, den wir bis dorthin im unterricht gemacht haben.
den letzten abschnitt hat unser lehrer angeschrieben, weil wir keine zeit mehr hatten es genau zu machen. dummerweise konnte er wohl seine eigene schrift nicht lesen und hat aus einem "p" ein "b" gemacht.
folglich kommt eigentlich genau das raus, wovon ihr gesprochen habt. aus der 17 wird eine ... naja keine 11, aber ne andere zahl (soweit bin ich noch nicht^^)
also, aufjeden fall schon mal danke!!!!! ich hoffe ihr seit mir nich böse, dass das alles eigentlich nen fehler meinerseits war... tut mir leid... danke für eure hilfe
außerdem hat es mir viel spaß bereitet mit der Cardanische Formeln zu arbeiten... auch wenn ich das für die 11te klasse nen bissl hart finde^^
mfg
Pause
ps: ich hoffe ihr könnt mir verzeihen
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:54 Do 10.05.2007 | Autor: | Loddar |
Hallo Matthias!
Grundlegendes hat Dir ja bereits Kroni mitgeteilt. Ich befürchte, Du musst hier wirklich auf ein Näherungsverfahren wie z.B. das Newton-Verfahren zurückgreifen.
Aber Du machst beim Umformen einen Fehler. Es muss heißen, nachdem Du durch $3_$ geteilt hast:
[mm] $x^3-\red{3}*x^2-2*x+\bruch{13}{\red{3}} [/mm] \ = \ 0$
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:58 Do 10.05.2007 | Autor: | Pause |
jo, das weis ich auch. hab ich auch eigentlich geschrieben.... weis nich warum das dort anders steht
thx für die antwort
|
|
|
|