www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenNullstellenbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Nullstellenbestimmung
Nullstellenbestimmung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Mi 27.02.2008
Autor: ZehEs

Aufgabe
Bestimme die Nullstellen von f(x) = [mm] \bruch{1}{4}x^{4}- \bruch{3}{2}x^{2}-2x [/mm]

Ich habe jetzt x ausgeklammert.
[mm] x_{1}=0 [/mm]
[mm] \bruch{1}{4}x^{3}- \bruch{3}{2}x-2=0 [/mm]

doch daran scheitere ich nun... polynomdivison schlägt fehl genauso wie honorschema....

wie geht das???^^

        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 27.02.2008
Autor: Teufel

Hallo!

Alles richtig bis hierhin. Deine neue Funktion hat nur noch eine nicht ganzzahlige Nullstelle, die du nur näherungsweise bestimmen kannst!
So bei 3 ca.

Bezug
                
Bezug
Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 Mi 27.02.2008
Autor: ZehEs

und wie funktioniert das?
danke schonmal :D

Bezug
                        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mi 27.02.2008
Autor: Teufel

Wenn du kein Verfahren kennst (z.B. Newton-verfahren, wie schon gesagt wurde), kannst du einfach "rumprobieren", bis du die Nullstelle hast. Auch als Intervallschachtelung bekannt.

Fang bei 3 an, da ist f(x) größer als 0. Also gehst du zu 2,5. Da ist f(x) kleiner als 0. Dann gehst du z.B. zu 2,75 etc, bist du so 2 Stellen nach dem Komma hast.

Bezug
        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Mi 27.02.2008
Autor: Arvi-Aussm-Wald

hier die lösung zu finden geht wohl nur numerisch, z.b mit dem newton-verfahren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]