www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenNullstellenbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Nullstellenbestimmung
Nullstellenbestimmung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 Di 30.06.2009
Autor: JeyTi

Aufgabe
f(x) = (x * x^(1/2) + 2) / x^(1/2)

Hallo Leute, bin wieder mal sehr auf eure Hilfe angewiesen.

ich habe die obengenannte Funktion, und ich weiß dass sie keine Nullstellen hat, aber ich kann das nicht zeigen bzw. habe irgendwie einen Denkfehler.

irgendwann komme ich bei der umrechnung auf x^(3/2) = -2

könnte mir bitte jamand erklären warum es hier keine Nullstelle gibt?

        
Bezug
Nullstellenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Di 30.06.2009
Autor: fred97


> f(x) = (x * x^(1/2) + 2) / x^(1/2)
>  Hallo Leute, bin wieder mal sehr auf eure Hilfe
> angewiesen.
>  
> ich habe die obengenannte Funktion, und ich weiß dass sie
> keine Nullstellen hat, aber ich kann das nicht zeigen bzw.
> habe irgendwie einen Denkfehler.
>  
> irgendwann komme ich bei der umrechnung auf x^(3/2) = -2
>  
> könnte mir bitte jamand erklären warum es hier keine
> Nullstelle gibt?




Ich gehe davon aus, dass folgende Funktion gemeint ist:

               $f(x) = [mm] \bruch{x\wurzel{x}+2}{\wurzel{x}}$ [/mm]

Da diese Funktion nur für positive x definiert ist, ist der Nenner immer > 0 und der Zähler immer > 2, damit ist f(x)>0 für jedes x>0.


FRED

Bezug
                
Bezug
Nullstellenbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Di 30.06.2009
Autor: JeyTi

vielen Dank für die schnelle Antwort.

ja die Funktion ist richtig, sorry an der Schreibweise sollte ich arbeiten.


aber noch ein Frage hätte ich:

du sagst, dass der Nenner  immer > 0 ist.
aber [mm] \wurzel{x} [/mm] könnte ja auch ein negative zahl sein, oder wo irre ich mich da?

Bezug
                        
Bezug
Nullstellenbestimmung: nicht-negativ
Status: (Antwort) fertig Status 
Datum: 13:58 Di 30.06.2009
Autor: Roadrunner

Hallo JayTi!


> aber [mm]\wurzel{x}[/mm] könnte ja auch ein negative zahl sein,

[notok] Gemäß Definition ist die Wurzel eine nicht-negative Zahl, also positiv oder höchstens Null.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Nullstellenbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Di 30.06.2009
Autor: JeyTi

ok das ergibt einen Sinn =)

vielen Dank für eure Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]